Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 048103    DOI: 10.1088/1674-1056/27/4/048103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Structural and electrical properties of reactive magnetron sputtered yttrium-doped HfO2 films

Yu Zhang(张昱)1, Jun Xu(徐军)1, Da-Yu Zhou(周大雨)2, Hang-Hang Wang(王行行)1, Wen-Qi Lu(陆文琪)1, Chi-Kyu Choi3
1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China;
2. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
3. Department of Physics, Jeju National University, Jeju 63243, Korea
Abstract  

Hafnium oxide thin films doped with different concentrations of yttrium are prepared on Si (100) substrates at room temperature using a reactive magnetron sputtering system. The effects of Y content on the bonding structure, crystallographic structure, and electrical properties of Y-doped HfO2 films are investigated. The x-ray photoelectron spectrum (XPS) indicates that the core level peak positions of Hf 4f and O 1s shift toward lower energy due to the structure change after Y doping. The depth profiling of XPS shows that the surface of the film is completely oxidized while the oxygen deficiency emerges after the stripping depths have increased. The x-ray diffraction and high resolution transmission electron microscopy (HRTEM) analyses reveal the evolution from monoclinic HfO2 phase towards stabilized cubic HfO2 phase and the preferred orientation of (111) appears with increasing Y content, while pure HfO2 shows the monoclinic phase only. The leakage current and permittivity are determined as a function of the Y content. The best combination of low leakage current of 10-7 A/cm2 at 1 V and a highest permittivity value of 29 is achieved when the doping ratio of Y increases to 9 mol%. A correlation among Y content, phase evolution and electrical properties of Y-doped HfO2 ultra-thin film is investigated.

Keywords:  Y-doped HfO2      ultra-thin film      high-k      x-ray photoelectron spectrum  
Received:  01 December 2017      Revised:  12 January 2018      Accepted manuscript online: 
PACS:  81.15.Cd (Deposition by sputtering)  
  77.55.df (For silicon electronics)  
  68.55.-a (Thin film structure and morphology)  
  82.80.Pv (Electron spectroscopy (X-ray photoelectron (XPS), Auger electron spectroscopy (AES), etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51272034 and 51672032) and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT17ZD211).

Corresponding Authors:  Jun Xu     E-mail:  xujun@dlut.edu.cn

Cite this article: 

Yu Zhang(张昱), Jun Xu(徐军), Da-Yu Zhou(周大雨), Hang-Hang Wang(王行行), Wen-Qi Lu(陆文琪), Chi-Kyu Choi Structural and electrical properties of reactive magnetron sputtered yttrium-doped HfO2 films 2018 Chin. Phys. B 27 048103

[1] Kingon A I Maria J P and Streiffer S K 2000 Nature 406 1032
[2] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
[3] Green M L, Gusev E P, Degraeve R and Garfunkel E 2001 J. Appl. Phys. Rev. 90 2057
[4] Gaymax M, Van S E, Houssa M, Delabie A, Conard T, Meuris M, Heyns M M, Dimoulas A, Spiga S, Fanciulli M, Seo J W and Goncharova L V 2006 Mater. Sci. Eng. B 135 256
[5] Lee B H, Kang L, Qi W J, Nieh R, Jeon Y, Onishi K and Lee J C 1999 Tech. Dig. IDEM 99 133
[6] Robertson 2000 J. Vac. Sci. Technol. B 18 1785
[7] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
[8] Torchio P, Gatto A, Alvisi M, Albrand G, Kaiser N and Amra C 2002 Appl. Opt. 41 3256
[9] Miyata N, Yasuda T and Abe Y 2010 J. Appl. Phys. 107 103536
[10] Cho J, Nguyen V, Ritcher C A, Ehrstein R, Lee B H and Lee J C 2002 Appl. Phys. Lett. 80 1249
[11] Hsieh C R, Chen Y Y and Lou J C 2010 Appl. Phys. Lett. 96 022905
[12] Villanueva-lbańez M, Luyer L C, Parola S, Matry O and Mugnier Mugnier J 2003 Rev. Adv. Mater. Sci. 5 296
[13] Ferrari S, Modreanu M, Scarel G and Fancinelli M 2004 Thin Solid Films 450 124
[14] Tang J, Zhang F, Zoogman P, Fabbri J, Chan S W, Zhu Y, Brus L E and Steigerwald M L 2005 Adv. Funct. Mater. 15 1595
[15] Noor-a-Alam M, Abhilash K and Ramana C V 2012 Thin Solid Films 520 6631
[16] Kita K, Kyuno K and Toriumi A 2005 Appl. Phys. Lett. 86 102906
[17] Xie Y, Ma Z, Su Y, Liu Y, Liu L, Zhao H, Zhou J, Zhang Z, Li J and Xie E 2011 J. Mater. Res. 26 50
[18] Frandons J, Broussrau B and Pradal F 1980 Phys. Stat. Sol. B 98 379
[19] Han Kai, Wang Xiao-Lei, Yang Hong and Wang Wen-Wu 2013 Chin. Phys. B 22 117701
[20] Meng Yong-Qiang, Liu Zheng-Tang, Feng Li-Ping and Cheng Shuai 2014 Chin. Phys. Lett. 31 077702
[21] Ma X L, Yang H, Xiang J J, Wang X L, Wang W W, Zhang J Q, Yin H X, Zhu H L and Zhao C 2017 Chin. Phys. B 26 027701
[22] Kadlec F and Simon P 2000 Mater. Sci. Eng. B 72 56
[23] Duwez P, Brown F H and Odell F 1951 J. Electrochem. Soc. 98 356
[24] Chen X Y, Song L X, You L J and Zhao L L 2013 Appl. Surf. Sci. 271 248
[25] Wong H, Zhan N, Ng K L, Poon M C and Kok C W 2004 Thin Solid Films 462-463 96
[26] Tan R, Azuma Y and Kojima I 2005 Appl. Surf. Sci. 241 135
[27] Lee C K, Cho E, Lee H S, Hwang C S and Han S 2008 Phys. Rev. B 78 012102
[28] Takeuchi H, Ha D and King T J 2004 J. Vac. Sci. Technol. A 22 1337
[29] Chen G H, Hou Z F, Gong X G and Li Q 2008 J. Appl. Phys. 104 074101
[1] Tuning the alignment of pentacene on copper substrate by annealing-assistant surface functionalization
Qiao-Jun Cao(曹巧君), Shuang Wen(温爽), Hai-Peng Xie(谢海鹏), Bi-Yun Shi(施碧云), Qun Wang(王群), Cong-Rong Lu(卢从蓉), Yongli Gao(高永利), Wei-Dong Dou(窦卫东). Chin. Phys. B, 2020, 29(7): 076801.
[2] Stress-induced leakage current characteristics of PMOS fabricated by a new multi-deposition multi-annealing technique with full gate last process
Yanrong Wang(王艳蓉), Hong Yang(杨红), Hao Xu(徐昊), Weichun Luo(罗维春), Luwei Qi(祁路伟), Shuxiang Zhang(张淑祥), Wenwu Wang(王文武), Jiang Yan(闫江), Huilong Zhu(朱慧珑), Chao Zhao(赵超), Dapeng Chen(陈大鹏), Tianchun Ye(叶甜春). Chin. Phys. B, 2017, 26(8): 087304.
[3] Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot
Jin Cao(曹进), Jing-Wei Xie(谢婧薇), Xiang Wei(魏翔), Jie Zhou(周洁), Chao-Ping Chen(陈超平), Zi-Xing Wang(王子兴), Chulgyu Jhun(田哲圭). Chin. Phys. B, 2016, 25(12): 128502.
[4] Atomic-layer-deposited Al2O3 and HfO2 on InAlAs: A comparative study of interfacial and electrical characteristics
Li-Fan Wu(武利翻), Yu-Ming Zhang(张玉明), Hong-Liang Lv(吕红亮), Yi-Men Zhang(张义门). Chin. Phys. B, 2016, 25(10): 108101.
[5] Investigation of 4H–SiC metal–insulation–semiconductor structure with Al2O3/SiO2 stacked dielectric
Tang Xiao-Yan (汤晓燕), Song Qing-Wen (宋庆文), Zhang Yu-Ming (张玉明), Zhang Yi-Men (张义门), Jia Ren-Xu (贾仁需), Lü Hong-Liang (吕红亮), Wang Yue-Hu (王悦湖 ). Chin. Phys. B, 2012, 21(8): 087701.
[6] Characteristics of high-quality HfSiON gate dielectric prepared by physical vapour deposition
Xu Gao-Bo(许高博) and Xu Qiu-Xia(徐秋霞). Chin. Phys. B, 2009, 18(2): 768-772.
[7] Electrical properties and reliability of HfO2 gate-dielectric MOS capacitors with trichloroethylene surface pretreatment
Xu Jing-Ping(徐静平), Chen Wei-Bing(陈卫兵), Lai Pui-To(黎沛涛), Li Yan-Ping(李艳萍), and Chan Chu-Lok(陈铸略). Chin. Phys. B, 2007, 16(2): 529-532.
[8] ANALYSIS OF THE X-RAY PHOTOELECTRON SPECTRA OF a-SiOCF FILMS PREPARED BY PLASMA-ENHANCED CHEMICAL VAPOUR DEPOSITION
Ding Shi-jin (丁士进), Wang Peng-fei (王鹏飞), Zhang Wei (张卫), Wang Ji-tao (王季陶), Wei William Lee. Chin. Phys. B, 2001, 10(4): 324-328.
No Suggested Reading articles found!