Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 020701    DOI: 10.1088/1674-1056/24/2/020701
GENERAL Prev   Next  

Computer simulation of the bombardment of a copper film on graphene with argon clusters

A. Y. Galashev, O. R. Rakhmanova
Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences, Sofia Kovalevskaya Str., 20, Yekaterinburg, 620990, Russia
Abstract  The process of graphene cleaning of a copper film by bombarding it with Ar13 clusters is investigated by the molecular dynamics method. The kinetic energies of the clusters are 5, 10, 20, and 30 eV and the incident angles are θ = 90°, 75°, 60°, 45°, and 0°. It is obtained that the cluster energy should be in the interval 20 eV-30 eV for effective graphene cleaning. There is no cleaning effect at vertical incidence (θ = 0°) of Ar13 clusters. The bombardments at 45° and 90° incident angles are the most effective on a moderate and large amount of deposited copper, respectively.
Keywords:  argon cluster bombardment      copper film      graphene  
Received:  02 July 2014      Revised:  24 September 2014      Accepted manuscript online: 
PACS:  07.05.Tp (Computer modeling and simulation)  
  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
  66.30.Fq (Self-diffusion in metals, semimetals, and alloys)  
  68.65.Pq (Graphene films)  
Fund: Project supported by the Russian Foundation for Basic Research (Grant No. 13-08-00273).
Corresponding Authors:  A. Y. Galashev     E-mail:  alexander-galashev@yandex.ru

Cite this article: 

A. Y. Galashev, O. R. Rakhmanova Computer simulation of the bombardment of a copper film on graphene with argon clusters 2015 Chin. Phys. B 24 020701

[1] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[2] Siokou A, Ravani F, Karakalos S, Frank O, Kalbac M and Galiotis C 2011 Appl. Surf. Sci. 257 9785
[3] Ito A and Nakamura H 2008 Commun. Comput. Phys. 4 592
[4] Inui N, Mochiji K and Moritani K 2008 Nanotechnology 19 505501
[5] Krasheninnikov A V and Nordlund K 2010 J. Appl. Phys. 107 071301
[6] Krasheninnikov A V and Banhart F 2007 Nat. Mater. 6 723
[7] Lehtinen O, Kotakoski J, Krasheninnikov A V, Tolvanen A, Nordlund K and Keinonen J 2010 Phys. Rev. B 81 153401
[8] Ahlgren E, Kotakoski J, Lehtinen O and Krasheninnikov A V 2012 Appl. Phys. Lett. 100 233108
[9] Tersoff J 1988 Phys. Rev. Lett. 61 2879
[10] Stuart S J, Tutein A V and Harrison J A 2000 J. Chem. Phys. 112 6472
[11] Rafii-Tabar H 2000 Phys. Rep. 325 239
[12] Oluwajobi A and Chen X 2011 Int. J. Autom. Comp. 8 326
[13] Teng K L, Hsiao P Y and Hung S W 2008 J. Nanosci. Nanotechnol. 8 3710
[14] Moore M C, Kalyanasundaram N, Freund J B and Johnson H T 2004 Nucl. Instrum. Method Phys. Res. B 225 241
[15] Delcorte A and Garrison B J 2000 J. Phys. Chem. B 104 6785
[16] Xu Z and Buehler M J 2010 J. Phys.: Condens. Matter 22 4853011
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!