Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 127703    DOI: 10.1088/1674-1056/24/12/127703
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Comparative research on the optical properties of three surface patterning ZnO ordered arrays

Hou Kai (侯凯), Zhu Ya-Bin (朱亚彬), Qiao Lu (乔璐)
School of Science, Beijing Jiaotong University, Beijing 100044, China
Abstract  We fabricate three surface patterning zinc oxide (ZnO) ordered arrays on glass substrates by using nanosphere lithography technique and dc magnetron sputtering technique. The crescent, tube and honeycomb surface morphologies of the samples are observed by scanning electron microscopy. The transmittance, fluorescence and confocal Raman spectra of the sample are measured. Obviously, when the angle between the plume and the substrate is 90°, the honeycomb arrays have a better transmission. Additionally, the PL intensity of honeycomb arrays is superior. With the increasing of the angle between the substrate and the sputtering plume, the fluorescence peak shows blue shift. The Raman peak located at 438 cm-1 belongs to ZnO E2 (high) mode, which corresponds to the characteristic band of the hexagonal wurtzite phase. The tube arrays have the best Raman spectrum intensity.
Keywords:  ZnO ordered arrays      transmittance      fluorescence spectroscopy      Raman spectroscopy  
Received:  19 June 2015      Revised:  01 August 2015      Accepted manuscript online: 
PACS:  77.55.hf (ZnO)  
  42.70.Km (Infrared transmitting materials)  
  87.64.kv (Fluorescence)  
  87.64.kp (Raman)  
Corresponding Authors:  Zhu Ya-Bin     E-mail:  ybzhu@bjtu.edu.cn

Cite this article: 

Hou Kai (侯凯), Zhu Ya-Bin (朱亚彬), Qiao Lu (乔璐) Comparative research on the optical properties of three surface patterning ZnO ordered arrays 2015 Chin. Phys. B 24 127703

[1] Armstrong E, Khunsin W, Osiak M, Blömker M, Torres C M S and D'wye C Or 2014 Small 10 1895
[2] KyongCho H, Jang J, Choi J H, Choi J, Kim J, Lee J, Lee B, Choe Y H, Lee K D, Kim S H, Lee K, Kim S K and Lee Y H 2006 Opt. Express 14 8654
[3] Retsch M, Tamm M, Bocchio N, Horn N, Förch R, Jonas U and Kreiter M 2009 Small 5 2105
[4] Shang C, Chen Z, Wang L L, Zhao Y F, Duan G Y and Yu L 2014 Chin. Phys. Lett. 31 114202
[5] Li Y, Fu Z Y and Su B L 2012 Adv. Funct. Mater. 22 4634
[6] Li Y, Sasaki T, Shimizu Y and Koshizaki N 2008 J. Am. Chem. Soc. 130 14755
[7] Song J Z, Kulinich S A, Yan J, Li Z G, He J P, Kan C X and Zeng H B 2013 Adv. Mater. 25 5750
[8] Wu K X, Yu L, Duan G Y, Wang L L and Xiao J H 2014 Chin. Phys. Lett. 31 94203
[9] Doney E U, Suh J Y, Villegas F, Lopez R, Haglund R F Jr and Feldman L C 2006 Phys. Rev. B 73 201401
[10] Heyderman L J, David C, Kläui M, Vaz C A F and Bland J A C 2003 J. Appl. Phys. 93 10011
[11] Hulteen J C and Van D R P 1995 J. Vac. Sci. Technol. A 13 1553
[12] Hong S H, Yun J H, Park H H and Kim J 2013 Appl. Phys. Lett. 103 153504
[13] Sun F, Cai W, Li Y, Duan G., Nichols W T, Liang C, Koshizaki N, Fang Q and Boyd I W 2005 Appl. Phys. B 81 765
[14] Gwinner M C, Koroknay E, Fu L W, Patoka P, Kandulski W, Giersig M and Giessen H 2009 Small 5 400
[15] Nakahara K, Akasaka S, Yuji H, Tamura K, Fujii T, Nishimoto Y, Takamizu D, Sasaki A, Tanabe T, Takasu H, Amaike H, Onuma T, Chichibu S F, Tsukazaki A, Ohtomo A and Kawasaki M 2010 Appl. Phys. Lett. 97 013501
[16] Law J B K and Thong J T L 2006 Appl. Phys. Lett. 88 133114
[17] Karvonen L, Säynätjoki A, Chen Y, Jussila H, Rönn J, Ruoho M, Alasaarela T, Kujala S, Norwood R A, Peyghambarian N, Kieu K and Honkanen S 2013 Appl. Phys. Lett. 103 031903
[18] Guo X D, Zhao Q H, Li R X, Pan H H, Guo X Y, Yin A Y and Dai W L 2006 Opt. Express 18 18401
[19] Huang C K, Sun K W and Chang W L 2012 Opt. Express 20 A85
[20] Peng L, Hu L F and Fang X S 2013 Adv. Mater. 25 5321
[21] Qiao L, Zhu Y B and Xu H 2014 Spectrosc. Spect. Anal. 34 2031
[22] Zhang R, Zhu Y B, Bi Y and Liao L F 2014 Acta Opt. Sin. 34 0630003
[23] Lei Y, Yang S K, Wu M H and Wilde G 2011 Chem. Soc. Rev. 40 1247
[24] Li W Y and Chen F Y 2014 Chin. Phys. B 23 117103
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[3] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[4] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[7] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[8] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[9] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[10] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[11] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[12] Phase transition of shocked water up to 6 GPa: Transmittance investigation
Lang Wu(吴浪), Yue-Hong Ren(任月虹), Wen-Qiang Liao(廖文强), Xi-Chen Huang(黄曦晨), Fu-Sheng Liu(刘福生), Ming-Jian Zhang(张明建), and Yan-Yun Sun(孙燕云). Chin. Phys. B, 2021, 30(5): 050701.
[13] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[14] Synthesis of ternary compound in H-S-Se system at high pressures
Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(12): 127801.
[15] Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials
Yu-Jia Sun(孙宇伽), Si-Min Pang(庞思敏), and Jun Zhang(张俊). Chin. Phys. B, 2021, 30(11): 117104.
No Suggested Reading articles found!