Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 126301    DOI: 10.1088/1674-1056/24/12/126301
RAPID COMMUNICATION Prev   Next  

Raman phonons in multiferroic FeVO4 crystals

Zhang An-Min (张安民)a, Liu Kai (刘凯)a, Ji Jian-Ting (籍建葶)a, He Chang-Zhen (何长振)b, Tian Yong (田勇)a, Jin Feng (金峰)a, Zhang Qing-Ming (张清明)a
a Department of Physics, Beijing Key Laboratory of Opto-Electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China;
b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Abstract  

Multiferroic materials are promising candidates for next-generation multi-functional devices, because of the coexistence of multi-orders and the coupling between the orders. FeVO4 has been confirmed to be a multiferroic compound, since it exhibits both ferroelectricity and antiferromagnetic ordering at low temperatures. In this paper, we have performed careful Raman scattering measurements on high-quality FeVO4 single crystals. The compound has a very rich phonon structure due to its low crystal symmetry (P-1) and at least 47 Raman-active phonon modes have been resolved in the low and hightemperature spectra. Most of the observed modes are well assigned with aid of first-principles calculations and symmetry analysis. The present study provides an experimental basis for exploring spin-lattice coupling and the mechanism of multiferroicity in FeVO4

Keywords:  Raman scattering      phonon assignment multiferroics  
Received:  27 September 2015      Revised:  08 October 2015      Accepted manuscript online: 
PACS:  63.20.dd (Measurements)  
  63.20.dk (First-principles theory)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
  78.30.Hv (Other nonmetallic inorganics)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2012CB921701), the National Natural Science Foundation of China (Grant Nos. 11174367 and 11004243), the China Postdoctoral Science Foundation, the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant Nos. 10XNI038, 14XNLF06, and 14XNLQ03).

Corresponding Authors:  Zhang Qing-Ming     E-mail:  qmzhang@ruc.edu.cn

Cite this article: 

Zhang An-Min (张安民), Liu Kai (刘凯), Ji Jian-Ting (籍建葶), He Chang-Zhen (何长振), Tian Yong (田勇), Jin Feng (金峰), Zhang Qing-Ming (张清明) Raman phonons in multiferroic FeVO4 crystals 2015 Chin. Phys. B 24 126301

[1] Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthelemy A and Fert A 2007 Nat. Mater. 6 296
[2] Cheong S W and Mostovoy M 2007 Nat. Mater. 6 13
[3] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
[4] Taniguchi K, Abe N, Takenobu T, Iwasa Y and Arima T 2006 Phys. Rev. Lett. 97 097203
[5] Lawes G, Harris A B, Kimura T, Rogado N, Cava R J, Aharony A, Entin-Wohlman O, Yildrim T, Kenzelmann M, Broholm C and Ramirez A P 2005 Phys. Rev. Lett. 95 087205
[6] Levinson L M and Wanklyn B M 1971 J. Solid State Chem. 3 131
[7] Surikov V I, Lisson V N, Surikov V I and Kourov N I 1983 Fizika Nizkikh Temperatur (Kiev) 9 1109
[8] He Z, Yamaura J I and Ueda Y 2008 J. Solid State Chem. 181 2346
[9] Daoud-Aladine A, Kundys B, Martin C, Radaelli P G, Brown P J, Simon C and Chapon L C 2009 Phys. Rev. B 80 220402
[10] Kundys B, Martin C and Simon C 2009 Phys. Rev. B 80 172103
[11] Zhao L, Wu M P Y, Yeh K W and Wu M K 2011 Solid State Commun. 151 1728
[12] Dixit A and Lawes G 2009 J. Phys.: Condens. Matter 21 456003
[13] Dixit A, Lawes G and Harris A B 2010 Phys. Rev. B 82 024430
[14] Zhang J, Ma L, Dai J, Zhang Y P, He Z, Normand B and Yu W 2014 Phys. Rev. B 89 174412
[15] Iliev M N, Abrashev M V, Laverdiere J, Jandl S, Gospodinov M M, Wang Y Q and Sun Y Y 2006 Phys. Rev. B 73 064302
[16] Jia C, Onoda S, Nagaosa N and Han J H 2007 Phys. Rev. B 76 144424
[17] Choi Y J, Yi H T, Lee S, Huang Q, Kiryukhin V and Cheong S W 2008 Phys. Rev. Lett. 100 047601
[18] Kumarasiri A, Abdelhamid E, Dixit A and Lawes G 2015 Phys. Rev. B 91 014420
[19] Brázdová V, Ganduglia-Pirovano M V and Sauer J 2005 J. Phys. Chem. B 109 394
[20] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 5159
[21] Giannozzi P et al. 2009 J. Phys.: Condens. Matter 21 395502
[22] Vanderbilt D 1990 Phys. Rev. B 41 7892
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[3] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[4] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[5] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[6] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[7] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[8] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[9] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[10] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[11] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
[12] Characterization of structural transitions and lattice dynamics of hybrid organic-inorganic perovskite CH3NH3PbI3
Feng Jin(金峰), Jian-Ting Ji(籍建葶), Chao Xie(谢超), Yi-Meng Wang(王艺朦), Shu-Na He(贺淑娜), Lei Zhang(张磊), Zhao-Rong Yang(杨昭荣), Feng Yan(严锋), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(7): 076102.
[13] Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(5): 056301.
[14] Research on co-propagation of QKD and classical communication by reducing the classical optical power
Ru-Shi He(何如适), Mu-Sheng Jiang(江木生), Yang Wang(汪洋), Ya-Hui Gan(甘亚辉), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(4): 040303.
[15] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
No Suggested Reading articles found!