Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117102    DOI: 10.1088/1674-1056/24/11/117102

Effects of IIIB transition metals on optoelectronic and magnetic properties of HoMnO3: A first principles study

H. A. Rahnamaye Aliabada, Battal G. Yalcinb
a Department of Physics, Hakim Sabzevari University, Sabzevar, Iran;
b Department of Physics, Sakarya University, Serdivan, Sakarya, Turkey
Abstract  The optoelectronic and magnetic properties of pure HoMnO3 and Ho0.67T0.33MnO3 (T = La, Y) alloys in hexagonal phase are theoretically investigated by using the first-principles calculations. The investigations are performed by means of the density functional theory through using the spin polarized generalized gradient approximation plus the Hubbard potential (SPGGA+U, Ueff= 3 eV). The studied material HoMnO3 exhibits two indirect band gaps: 1.58 eV for the spin-up state and 0.72 eV for the spin-down state along the S-G direction within the SPGGA+U approximation. It is found that the band gap of pure HoMnO3 for the spin-up state increases with increasing La and Y dopants. The results show that all of the studied materials have semi-metallic behaviors for the spin-up state and semiconducting character for the spin-down state. The substitutions of La and Y for Ho in HoMnO3 cause the static dielectric constant (ε0) to increase in the x direction but to decrease in the z direction. The calculated optical conductivity spectrum of HoMnO3 in a low energy range is in good agreement with the recent experimental data.
Keywords:  optoelectronic and magnetic properties      HoMnO3      Hubbard potential  
Received:  08 May 2015      Revised:  10 July 2015      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  75.25.-j (Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Corresponding Authors:  H. A. Rahnamaye Aliabad     E-mail:

Cite this article: 

H. A. Rahnamaye Aliabad, Battal G. Yalcin Effects of IIIB transition metals on optoelectronic and magnetic properties of HoMnO3: A first principles study 2015 Chin. Phys. B 24 117102

[1] Lonkai Th, Hohlwein D, Ihringer J and Prandl W;2002 Appl. Phys. A 74 843
[2] Makhneva A A, Nomerovannayaa L V and Balbashovb A M;2011 Physics of the Solid State 53 105
[3] Ederer C and Spaldin N A;2005 Current Opinion in Solid State and Materials Science 9 128
[4] Rai R C, Cao J, J L Musfeldt, Kim S B, Cheong S W and Wei X;2007 Phys. Rev. B 75 184414
[5] Dela Cruz C, Yen F, Lorenz B, Wang Y Q, Sun Y Y, Gospodinov M M and Chu C W;2005 Phys. Rev. B 71 60407
[6] Gao P, Chen Z, Tyson T A, Wu T, Ahn K H, Liu Z, Tappero R, Kim S B and Cheong S W;2011 Phys. Rev. B 83 224113
[7] Gibbs A S, Knight K S and Lightfoot P;2011 Phys. Rev. B 83 094111
[8] Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J and Fiebig M;2004 Nature 430 541
[9] Nandi S, Kreyssig A, Tan L, Kim J W, Yan J Q, Lang J C, Haskel D, McQueeney R J and Goldman A I;2008 Phys. Rev. Lett. 100 217201
[10] Murugavel P, Lee J H, Lee D, Nohb T W, Younghun J, Myung-Hwa J, Seok O Y and Hoon K K;2007 Appl. Phys. Lett. 90 142902
[11] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2011 WIEN2k User’s Guide (Vienna University of Technology in Austria)
[12] Perdew P J, Burke K and Ernzerhof M;1996 Phys. Rev. Lett. 77 3865
[13] Anisimov V I, Solovyev V I, Korotin M A, Czyżyk M T and Sawatzky G A;1993 Phys. Rev. B 48 16929
[14] Petukhov A G and Mazin I I;2003 Phys. Rev. B 67 153106
[15] Novák P, Kuneš J, Chaput L and Pickett W E;2006 Phys. Status Solidi B 243 563
[16] Madsen G K H and Novák P;2005 Europhys. Lett. 69 777
[17] Erhart P, Klein A, Egdell R G and Albel K;2007 Phys. Rev. B 75 153205
[18] Chong G Z, Jing H F, Jian H Y, Zheng C D and Xue F J;2011 Acta Phys. Chim. Sin. 27 388
[19] Choi W S, Kim D G, Seo S S A, Moon S J, Lee D, Lee J H, Lee H S, Cho D Y, Lee Y S, Murugavel P, Yu J and Noh T W;2008 Phys. Rev. B 77 045137
[20] Bertaut E F and Mercier M;1963 Phys. Lett. 5 27
[21] Vajk O P, Kenzelmann M, Lynn J W, Kim S B and Cheong S W;2005 Phys. Rev. Lett. 94 087601
[22] Condran S G and Plumer M L;2010 J. Phys.: Condens. Matter 22 16220
[23] Rahnamaye Aliabad H A and Ahmad I;2012 Physica B 407 368
[24] Wooten F 1972 Optical Properties of Solids (New York: Academic Press) pp. 114-115
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[7] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
[8] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[9] Robust and intrinsic type-III nodal points in a diamond-like lattice
Qing-Ya Cheng(程青亚), Yue-E Xie(谢月娥), Xiao-Hong Yan(颜晓红), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2022, 31(11): 117101.
[10] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
[11] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
[12] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[13] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[14] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[15] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
No Suggested Reading articles found!