Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 117101    DOI: 10.1088/1674-1056/24/11/117101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Phase diagram of the Fermi–Hubbard model with spin-dependent external potentials: A DMRG study

Wei Xing-Bo (魏兴波), Meng Ye-Ming (孟烨铭), Wu Zhe-Ming (吴哲明), Gao Xian-Long (高先龙)
Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  We investigate a one-dimensional two-component system in an optical lattice of attractive interactions under a spin-dependent external potential. Based on the density-matrix renormalization group methods, we obtain its phase diagram as a function of the external potential imbalance and the strength of the attractive interaction through the analysis on the density profiles and the momentum pair correlation functions. We find that there are three different phases in the system, a coexisted fully polarized and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, a normal polarized phase, and a Bardeen-Cooper-Schrieffer (BCS) phase. Different from the systems of spin-independent external potential, where the FFLO phase is normally favored by the attractive interactions, in the present situation, the FFLO phases are easily destroyed by the attractive interactions, leading to the normal polarized or the BCS phase.
Keywords:  Fermi-Hubbard model      spin-dependent potential      Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase  
Received:  18 June 2015      Revised:  09 October 2015      Accepted manuscript online: 
PACS:  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.10.Li (Excited states and pairing interactions in model systems)  
  05.30.Fk (Fermion systems and electron gas)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374266 and 11174253) and the Program for New Century Excellent Talents in University, China.
Corresponding Authors:  Gao Xian-Long     E-mail:  gaoxl@zjnu.edu.cn

Cite this article: 

Wei Xing-Bo (魏兴波), Meng Ye-Ming (孟烨铭), Wu Zhe-Ming (吴哲明), Gao Xian-Long (高先龙) Phase diagram of the Fermi–Hubbard model with spin-dependent external potentials: A DMRG study 2015 Chin. Phys. B 24 117101

[1] Köhl M, Moritz H and Stöferle T;2005 Phys. Rev. Lett. 94 080403
[2] Tempere J, Wouters M and Devreese J T;2007 Phys. Rev. B 75 184526
[3] Milstein J N, Kokkelmans S and Holland M J;2002 Phys. Rev. A 66 043604
[4] Wlazöwski G, Magierski P and Drut J E;2013 Phys. Rev. Lett. 110 090401
[5] Pagano G, Mancini M and Cappellini G;2014 Nat. Physics 10 198
[6] Lewenstein W, Sanpera A, Ahufinger V, Damski B, Sen (De) A and Sen U;2007 Adv. Phys. 56 243
[7] Hao Y J;2011 Chin. Phys. B 20 060307
[8] Blume D;2008 Phys. Rev. A 78 013613
[9] Iskin M and Williams C J;2008 Phys. Rev. A 77 013605
[10] Snoek M, Titvinidze I, Töke C, Byczuk K and Hofstetter W;2008 New. J. Phys. 10 093008
[11] Xianlong G;2013 Phys. Rev. A 87 023628
[12] White S R;1992 Phys. Rev. Lett. 69 2863
[13] Chen A H and Xianlong G;2010 Phys. Rev. A 81 013628
[14] Xu Z, Li L and Xianlong G;2013 J. Phys.: Condens. Matt. 25 055601
[15] Chen A H and Xianlong G;2012 Phys. Rev. A 86 065602
[16] Jia W, Dou F Q, Sun J A and Duan W S;2015 Chin. Phys. B 24 040307
[17] Wang Y, Zong F D and Li F B;2013 Chin. Phys. B 22 30315
[18] Huang L H, Wang P J, Fu Z K and Zhang J;2014 Chin. Phys. B 23 13402
[19] Liao Y, Rittner A S C, Paprotta T, Li W, Partridge G B, Hulet R G, Baur S K and Mueller E J;2010 Nature 467 567
[20] Yang Y;2001 Phys. Rev. B 63 140511(R)
[21] Guan X W, Batchelor M T, Lee C and Bortz M;2007 Phys. Rev. B 76 085120
[22] Jiang Y Z, Chen Y Y and Guan X W;2015 Chin. Phys. B 24 050311
[23] Orso G;2007 Phys. Rev. Lett. 98 070402
[24] Hu H, Liu X J and Drummond P D;2007 Phys. Rev. Lett. 98 070403
[25] Xianlong G and Reza R;2008 Phys. Rev. A 77 033604
[26] Chen A H and Xianlong G;2012 Phys. Rev. B 85 134203
[27] Guan X W, Batchelor M T and Lee C H;2013 Rev. Mod. Phys. 85 1633
[28] Partridge G N, Li W, Kamar R I, Liao Y A and Hulet R G;2006 Science 311 503
[29] Rizzi M, Polini M and Cazalilla M A;2008 Phys. Rev. B 77 245105
[30] Franca V V, Hörndlein D and Buchleitner A;2012 Phys. Rev. A 86 033622
[31] Roscilde T, Rodríguez M and Eckert K;2009 New J. Phys. 11 055041
[1] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[2] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[3] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[4] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[5] Floquet topological phase transition in two-dimensional quadratic band crossing system
Guo-Bao Zhu(朱国宝) and Hui-Min Yang(杨慧敏). Chin. Phys. B, 2021, 30(6): 067304.
[6] Superfluid states in α-T3 lattice
Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财). Chin. Phys. B, 2021, 30(6): 060306.
[7] Charge structure factors of doped armchair nanotubes in the presence of electron-phonon interaction
Hamed Rezania, Farshad Azizi. Chin. Phys. B, 2020, 29(9): 096501.
[8] Improved hybrid parallel strategy for density matrix renormalization group method
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 070202.
[9] Hubbard model on an anisotropic checkerboard lattice at finite temperatures: Magnetic and metal-insulator transitions
Hai-Di Liu(刘海迪). Chin. Phys. B, 2019, 28(10): 107102.
[10] Mott transition in ruby lattice Hubbard model
An Bao(保安). Chin. Phys. B, 2019, 28(5): 057101.
[11] Particle-hole fluctuations and possible superconductivity in doped α-RuCl3
Bin-Bin Wang(王斌斌), Wei Wang(王巍), Shun-Li Yu(于顺利), Jian-Xin Li(李建新). Chin. Phys. B, 2019, 28(5): 057402.
[12] Controllable precision of the projective truncation approximation for Green's functions
Peng Fan(范鹏), Ning-Hua Tong(同宁华). Chin. Phys. B, 2019, 28(4): 047102.
[13] Phase diagram, correlations, and quantum critical point in the periodic Anderson model
Jian-Wei Yang(杨建伟), Qiao-Ni Chen(陈巧妮). Chin. Phys. B, 2018, 27(3): 037101.
[14] Kernel polynomial representation for imaginary-time Green's functions in continuous-time quantum Monte Carlo impurity solver
Li Huang(黄理). Chin. Phys. B, 2016, 25(11): 117101.
[15] Topological hierarchy matters–topological matters with superlattices of defects
Jing He(何敬), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2016, 25(11): 117310.
No Suggested Reading articles found!