Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 024302    DOI: 10.1088/1674-1056/25/2/024302
Special Issue: Virtual Special Topic — Acoustics
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analysis of underwater decoupling properties of a locally resonant acoustic metamaterial coating

Ling-Zhi Huang(黄凌志), Yong Xiao(肖勇), Ji-Hong Wen(温激鸿), Hai-Bin Yang(杨海滨), Xi-Sen Wen(温熙森)
Vibration and Acoustics Research Group, Laboratory of Science and Technologyon Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, China
Abstract  This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agreements between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure.
Keywords:  locally resonant      decoupling mechanism      underwater sound radiation  
Received:  30 August 2015      Revised:  14 October 2015      Accepted manuscript online: 
PACS:  43.20.+g (General linear acoustics)  
  43.30.Jx (Radiation from objects vibrating under water, acoustic and mechanical impedance)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51305448 and 51275519).
Corresponding Authors:  Ji-Hong Wen     E-mail:  wenjihong@vip.sina.com

Cite this article: 

Ling-Zhi Huang(黄凌志), Yong Xiao(肖勇), Ji-Hong Wen(温激鸿), Hai-Bin Yang(杨海滨), Xi-Sen Wen(温熙森) Analysis of underwater decoupling properties of a locally resonant acoustic metamaterial coating 2016 Chin. Phys. B 25 024302

[1] Ko S H 1997 J. Acoust. Soc. Am. 101 3306
[2] Berry A and Foin O 2001 J. Acoust. Soc. Am. 109 2704
[3] Wang X Z, Zhang A M, Pang F Z and Yao X L 2014 J. Sound Vib. 333 228
[4] Tao M, Tang W L and Hua H X 2010 J. Vib. Acoust. 132 61001
[5] Zhu D W, Huang X C, Wang Y, Xiao F and Hua H X 2014 J. Mechan-ical Engineering Science (in press)
[6] Huang L Z, Xiao Y, Wen J H, Yang H B and Wen X S 2015 Acta Phys. Sin. 64 154301 (in Chinese)
[7] Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T and Sheng P 2000 Science 289 1734
[8] Mei J, Liu Z Y, Shi J and Tian D C 2003 Phys. Rev. B 67 245107
[9] Liu Z Y, Chan C T and Sheng P 2000 Phys. Rev. B 62 2446
[10] Meng H, Wen J H, Zhao H G, Lv L M and Wen X S 2012 J. Acoust. Soc. Am. 132 69
[11] Meng H, Wen J H, Zhao H G and Wen X S 2012 J. Sound Vib. 2012 4406
[12] Zhao H G, Wen J H, Yu D L and Wen X S 2010 J. Appl. Phys. 107 23519
[13] Wen J H, Zhao H G, Lv L M, Yuan B, Wang G and Wen X S 2011 J. Acoust. Soc. Am. 130 1201
[14] Jiang H, Wang Y, Zhang M, Hu Y, Lan D, Zhang Y and Wei B 2009 Appl. Phys. Lett. 95 104101
[15] Duan Y T, Luo J, Wang G H, Hang Z H, Hou B, Li J S, Sheng P and Lai Y 2015 Sci. Rep. 5 12139
[16] Zhao H G, Wen J H, Yang H B, Lv L M and Wen X S 2014 Acta Phys. Sin. 63 134303 (in Chinese)
[17] Hladky-Hennion A C and Decarpigny J N 1991 J. Acoust. Soc. Am. 90 3356
[18] Foin O and Berry A 2000 J. Acoust. Soc. Am. 107 2501
[19] Still T, Oudich M, Auerhammer G K, Vlassopoulos D, Djafari-Rouhani B, Fytas G and Sheng P 2013 Phys. Rev. B 88 94102
[20] He S P, He Y A and Zhang W Q 2014 Acta Acoust. 39 177(in Chinese)
[21] Fokin V, Ambati M, Sun C and Zhang X 2007 Phys. Rev. B 76 144305
[22] Zhou X M and Hu G K 2009 Phys. Rev. B 79 195109
[1] Impact vibration properties of locally resonant fluid-conveying pipes
Bing Hu(胡兵), Fu-Lei Zhu(朱付磊), Dian-Long Yu(郁殿龙), Jiang-Wei Liu(刘江伟), Zhen-Fang Zhang(张振方), Jie Zhong(钟杰), and Ji-Hong Wen(温激鸿). Chin. Phys. B, 2020, 29(12): 124301.
[2] Effects of core position of locally resonant scatterers on low-frequency acoustic absorption in viscoelastic panel
Zhong Jie (钟杰), Wen Ji-Hong (温激鸿), Zhao Hong-Gang (赵宏刚), Yin Jian-Fei (尹剑飞), Yang Hai-Bin (杨海滨). Chin. Phys. B, 2015, 24(8): 084301.
[3] Oblique incidence properties of locally resonant sonic materials with resonance and Bragg scattering effects
Yuan Bo (袁博), Wen Ji-Hong (温激鸿), Wen Xi-Sen (温熙森). Chin. Phys. B, 2013, 22(7): 074302.
[4] Wide-band underwater acoustic absorption based on locally resonant unit and interpenetrating network structure
Jiang Heng(姜恒), Wang Yu-Ren(王育人), Zhang Mi-Lin(张密林), Hu Yan-Ping(胡燕萍), Lan Ding(蓝鼎), Wu Qun-Li(吴群力), and Lu Huan-Tong(逯还通). Chin. Phys. B, 2010, 19(2): 026202.
[5] Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals
Wang Gang(王刚), Shao Li-Hui(邵丽晖), Liu Yao-Zong(刘耀宗), and Wen Ji-Hong(温激鸿). Chin. Phys. B, 2006, 15(8): 1843-1848.
[6] Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures
Yu Dian-Long (郁殿龙), Wang Gang (王刚), Liu Yao-Zong (刘耀宗), Wen Ji-Hong (温激鸿), Qiu Jing (邱静). Chin. Phys. B, 2006, 15(2): 266-271.
[7] Formation mechanism of the low-frequency locally resonant band gap in the two-dimensional ternary phononic crystals
Wang Gang (王刚), Liu Yao-Zong (刘耀宗), Wen Ji-Hong (温激鸿), Yu Dian-Long (郁殿龙). Chin. Phys. B, 2006, 15(2): 407-411.
No Suggested Reading articles found!