Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 110305    DOI: 10.1088/1674-1056/24/11/110305
GENERAL Prev   Next  

Entanglement dynamics of a three-qubit system with different interatomic distances

Feng Ling-Juan (封玲娟)a, Zhang Ying-Jie (张英杰)a b, Zhang Lu (张路)a, Xia Yun-Jie (夏云杰)a
a Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China;
b Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We investigate the tripartite entanglement dynamics of three two-level atoms in a multi-mode vacuum field. By considering the influences of the interatomic distance and the initial condition on the lower bound of concurrence and the tripartite negativity, we show that an optimal interatomic distance can be found to minimize the collective damping. Interestingly, at the same optimal distance, the tripartite entanglement would be maximized in the open dynamics process. In the case of shorter interatomic distance, the tripartite entanglement can display the oscillatory behavior in the initial short-time limit and be trapped in a stationary value in the long-time limit. In addition, the tripartite entanglement for the general situation with different interatomic distances is also discussed.
Keywords:  quantum entanglement      the lower bound of concurrence      W state      interatomic distance  
Received:  25 April 2015      Revised:  17 June 2015      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012, 11204156, and 11304179), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20133705110001 and 20123705120002), and the Natural Science Foundation of Shandong Province, China (Grant Nos. BS2013DX034, ZR2012FQ024, and ZR2014AP009).
Corresponding Authors:  Xia Yun-Jie     E-mail:  yjxia@mail.qfnu.edu.cn

Cite this article: 

Feng Ling-Juan (封玲娟), Zhang Ying-Jie (张英杰), Zhang Lu (张路), Xia Yun-Jie (夏云杰) Entanglement dynamics of a three-qubit system with different interatomic distances 2015 Chin. Phys. B 24 110305

[1] Yu T and Eberly J H;2004 Phys. Rev. Lett. 93 140404
[2] Yu T and Eberly J H;2006 Phys. Rev. Lett. 97 140403
[3] Ikram M, Li F L and Zubairy M S;2007 Phys. Rev. A 75 062336
[4] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Souto Ribeiro P H and Davidovich L;2007 Science 316 579
[5] Bellomo B, Lo Franco R and Compagno G;2007 Phys. Rev. Lett. 99 160502
[6] Li Y, Zhou J and Guo H;2009 Phys. Rev. A 79 012309
[7] Maniscalco S, Francica F, Zaffino R L, Gullo N L and Plastina F;2008 Phys. Rev. Lett. 100 090503
[8] Wu Q and Zhang Z M;2014 Chin. Phys. B 23 034203
[9] Shi J D, Wu T, Song X K and Ye L;2014 Chin. Phys. B 23 020310
[10] López C E, Romero G, Lastra F, Solano E and Retamal J C;2008 Phys. Rev. Let. 101 080503
[11] Bellomo B, Lo Franco R and Compagno G;2008 Phys. Rev. A 77 032342
[12] Lehmberg R H;1970 Phys. Rev. A 2 883
[13] Tahira R, Ikram M and Zubairy M S;2011 Opt. Commun. 284 3643
[14] Hu M L and Fan H;2012 Ann. Phys. 327 851
[15] Ficek Z and Tana’s R;2006 Phys. Rev. A 74 024304
[16] Almutairi K, Tana’s R and Ficek Z;2011 Phys. Rev. A 84 013831
[17] Berrada K, Fanchini F F and Abdel-Khalek S;2012 Phys. Rev. A 85 052315
[18] Nielsen M A and Chuang I L 2010 Cambridge University Press
[19] Mintert F, Carvalho A R R, Kuś M and Buchleitner A;2005 Phys. Rep. 415 207
[20] Man Z X, Zhang Y J, Su F and Xia Y J;2010 Eur. Phys. J. D 58 147
[21] Weinstein Y S;2010 Phys. Rev. A 82 032326
[22] Siomau M and Fritzsche S;2010 Eur. Phys. J. D 60 397
[23] Barredo D, Ravets S, Labuhn H, Béguin L, Vernier A, Nogrette F, Lahaye T and Browaeys A;2014 Phys. Rev. Lett. 112 183002
[24] An N B, Kim J and Kim K;2010 Phys. Rev. A 82 032316
[25] An N B, Kim J and Kim K;2011 Phys. Rev. A 84 022329
[26] Li M, Fei S M and Wang Z X;2009 J. Phys. A: Math. Theor. 42 145303
[27] Feng L J and Xia Y J;2015 Acta Phys. Sin. 64 010302 (in Chinese)
[28] Sabín C and García-Alcaine G;2008 Eur. Phys. J. D 48 435
[29] Acín A, Andrianov A, Costa L, Jané E, Latorre J I and Tarrach R;2000 Phys. Rev. Lett. 85 1560
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[5] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[8] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[9] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[10] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[11] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[12] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[13] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[14] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[15] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
No Suggested Reading articles found!