Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 070704    DOI: 10.1088/1674-1056/27/7/070704
GENERAL Prev   Next  

A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system

Tao Cheng(程涛)1,2,3, Wenjin Liu(刘文劲)1,3, Boqing Pang(庞博清)1,2,3, Ping Yang(杨平)1,3, Bing Xu(许冰)1,3
1 Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
Abstract  We propose a slope-based decoupling algorithm to simultaneously control the dual deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. This algorithm can directly use the woofer's response matrix measured from a Shack-Hartmann wave-front sensor to construct a slope-based orthogonal basis, and then selectively distribute the large-amplitude low-order aberration to woofer DM and the remaining aberration to tweeter DM through the slope-based orthogonal basis. At the same moment, in order to avoid the two DMs generating opposite compensation, a constraint matrix used to reset tweeter control vector is convenient to be calculated with the slope-based orthogonal basis. Numeral simulation demonstrates that this algorithm has a good performance to control the adaptive optics system with dual DMs simultaneously. Compared with the typical decoupling algorithm, this algorithm can take full use of the compensation ability of woofer DM and release the stroke of tweeter DM to compensate high-order aberration. More importantly, it does not need to measure the accurate shape of tweeter's influence function and keeps better performance of restraining the coupling error with the continuous-dynamic aberration.
Keywords:  dual deformable mirrors      decoupling algorithm      adaptive optics  
Received:  30 December 2017      Revised:  02 May 2018      Accepted manuscript online: 
PACS:  07.05.Tp (Computer modeling and simulation)  
  95.75.Qr (Adaptive and segmented optics)  
  42.68.Wt (Remote sensing; LIDAR and adaptive systems)  
Fund: Project supported by the Key Scientific Equipment Development Project of China (Grant No. ZDYZ2013-2), the National High-Tech R&D Program of China (Grant Nos. G128201-G158201 and G128603-G158603), the Innovation Fund of Chinese Academy of Science (Grant No. CXJJ-16M208), the Youth Innovation Promotion Association of the Chinese Academy of Sciences, and the Outstanding Young Scientists, Chinese Academy of Sciences.
Corresponding Authors:  Ping Yang     E-mail:  pingyang2516@163.com

Cite this article: 

Tao Cheng(程涛), Wenjin Liu(刘文劲), Boqing Pang(庞博清), Ping Yang(杨平), Bing Xu(许冰) A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system 2018 Chin. Phys. B 27 070704

[1] Wu Z Z, Zhang Z, Kong X H, Wu J Q, Wang T, Liu M and Xie S R 2017 Chin. Phys. B 26 074201
[2] Xuan L, He B, Hu L F, Li D Y, Xu H Y, Zhang X Y, Wang S X, Wang Y K, Yang C L, Cao Z L, Mu Q Q and Lu X H 2016 Chin. Phys. B 25 094216
[3] Lu J, Li H, He Y, Shi G H and Zhang Y D 2011 Acta Phys. Sin. 60 034207 (in Chinese)
[4] Dagel D J, Cowan W D, Spahn O B, Grossetete G D and Griñe A J 2005 J. Microelectro-Mech. Syst. 15 572
[5] Zou W, Qi X and Burns S A 2011 Opt. Express 2 1986
[6] Chen D C, Jones S M, Silva D A and Olivier S S 2007 J. Opt. Soc. Am. A 24 1305
[7] Zawadzki R, Choi S, Jones S M, Oliver S S and Werner J S 2007 J. Opt. Soc. Am. A 24 1373
[8] Cense B, Koperda E, Brown J M, Kocaoglu O P, Gao W, Jonnal R S and Miller D T 2009 Opt. Express 17 4095
[9] Conan R, Bradley C, Hampton C P, Keskin O, Hilton A and Blain C 2007 Appl. Opt. 46 4329
[10] Hu S, Xu B, Zhang X, Hou J, Wu J and Jiang W H 2006 Appl. Opt. 45 2638
[11] Liu W J, Dong L Z, Yang P, Lei X, Yan H and Xu B 2013 Opt. Express 20 23885
[12] Lavigne J F and Véran J P 2008 J. Opt. Soc. Am. A 25 2271
[13] Hampton P J, Agathoklis P, Conan R and Bradley C 2010 J. Opt. Soc. Am. A 27 A145
[14] Zou W, Qi X and Burns S A 2008 Opt. Lett. 33 2602
[15] Zou W and Burns S A 2009 Opt. Express 17 20167
[16] Zou W and Burns S A 2012 Appl. Opt. 51 1198
[17] Li C H, Sredar N, Ivers K, Queener H and Porter J 2010 Opt. Express 18 16671
[1] Co-focus experiment of segmented mirror
Bin Li(李斌), Wen-Hao Yu(于文豪), Mo Chen(陈莫), Jin-Long Tang(唐金龙), Hao Xian(鲜浩). Chin. Phys. B, 2017, 26(6): 060706.
[2] Influence of low temperature on the surface deformation of deformable mirrors
Juncheng You(尤俊成), Chunlin Guan(官春林), Hong Zhou(周虹). Chin. Phys. B, 2017, 26(5): 054215.
[3] A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics
Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094214.
[4] Configuration optimization of laser guide stars and wavefront correctors for multi-conjugation adaptive optics
Li Xuan(宣丽), Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海). Chin. Phys. B, 2016, 25(9): 094216.
[5] Determining the imaging plane of a retinal capillary layer in adaptive optical imaging
Le-Bao Yang(杨乐宝), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Ji Ma(马骥), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094219.
[6] High signal-to-noise ratio sensing with Shack-Hartmann wavefront sensor based on auto gain control of electron multiplying CCD
Zhao-Yi Zhu(朱召义), Da-Yu Li(李大禹), Li-Fa Hu(胡立发), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 090702.
[7] Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system
Cheng Sheng-Yi (程生毅), Liu Wen-Jin (刘文劲), Chen Shan-Qiu (陈善球), Dong Li-Zhi (董理治), Yang Ping (杨平), Xu Bing (许冰). Chin. Phys. B, 2015, 24(8): 084214.
[8] Retinal axial focusing and multi-layer imaging with a liquid crystal adaptive optics camera
Liu Rui-Xue (刘瑞雪), Zheng Xian-Liang (郑贤良), Li Da-Yu (李大禹), Xia Ming-Liang (夏明亮), Hu Li-Fa (胡立发), Cao Zhao-Liang (曹召良), Mu Quan-Quan (穆全全), Xuan Li (宣丽). Chin. Phys. B, 2014, 23(9): 094211.
[9] Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler
Luo Wen (罗文), Geng Chao (耿超), Wu Yun-Yun (武云云), Tan Yi (谭毅), Luo Qi (罗奇), Liu Hong-Mei (刘红梅), Li Xin-Yang (李新阳). Chin. Phys. B, 2014, 23(1): 014207.
[10] Wavefront correction of Ti:sapphire terawatt laser with varying precision of phase conjugation between deformable mirror and wavefront sensor
Yu Liang-Hong(於亮红), Liang Xiao-Yan(梁晓燕), Ren Zhi-Jun(任志君), Wang Li(王利), Xu Yi(许毅), Lu Xiao-Ming(陆效明), and Yu Guo-Hao(于国浩) . Chin. Phys. B, 2012, 21(1): 014201.
[11] High precision Zernike modal gray map reconstruction for liquid crystal corrector
Liu Chao(刘超), Mu Quan-Quan(穆全全), Hu Li-Fa(胡立发), Cao Zhao-Liang(曹召良), and Xuan Li(宣丽). Chin. Phys. B, 2010, 19(6): 064214.
[12] Thermal stability test and analysis of a 20-actuator bimorph deformable mirror
Ning Yu(宁禹), Zhou Hong(周虹), Yu Hao(余浩), Rao Chang-Hui(饶长辉), and Jiang Wen-Han(姜文汉). Chin. Phys. B, 2009, 18(3): 1089-1095.
[13] Simulated human eye retina adaptive optics imaging system based on a liquid crystal on silicon device
Hu Li-Fa (姜宝光), Xuan Li (曹召良), Jiang Bao-Guang (穆全全), Cao Zhao-Liang (胡立发), Mu Quan-Quan (李超), Li Chao (宣丽). Chin. Phys. B, 2008, 17(12): 4529-4532.
No Suggested Reading articles found!