Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 110303    DOI: 10.1088/1674-1056/24/11/110303
GENERAL Prev   Next  

Effect of hydrostatic pressure and polaronic mass of the binding energy in a spherical quantum dot

A. Rejo Jeicea, Sr. Gerardin Jayamb, K. S. Joseph Wilsonc
a Department of Physics, Annai Velankanni College, Tholayavattam, Kanyakumari Dist-629157, India;
b Department of Physics, Holy Cross College, Nagercoil, Kanyakumari Dist, India;
c Departmant of Physics, ArulAnandar College (Autonomous), Karumathur, Madurai-625514, India
Abstract  Simultaneous effect of hydrostatic pressure and polaronic mass on the binding energies of the ground and excited states of an on-center hydrogenic impurity confined in a GaAs/GaAlAs spherical quantum dot are theoretically investigated by the variational method within the effective mass approximation. The binding energy is calculated as a function of dot radius and pressure. Our findings proved that the hydrostatic pressure led to the decrease of confined energy and the increase of donor binding energy. Conduction band non-parabolicity and the polaron masses are effective in the donor binding energy which is significant for narrow dots not in the confined energy. The maximum donor binding energy achieved by the polaronic mass in the ground and excited states are 2%-19% for the narrow dots. The confined and donor binding energies approach zero as the dot size approaches infinity.
Keywords:  spherical quantum dot      square well confinement      confined energies      effective mass approximation  
Received:  11 March 2015      Revised:  02 June 2015      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ge (Solutions of wave equations: bound states)  
  03.67.-a (Quantum information)  
Corresponding Authors:  A. Rejo Jeice     E-mail:  rejojeice@gmail.com

Cite this article: 

A. Rejo Jeice, Sr. Gerardin Jayam, K. S. Joseph Wilson Effect of hydrostatic pressure and polaronic mass of the binding energy in a spherical quantum dot 2015 Chin. Phys. B 24 110303

[1] Delerue C and Lannoo M 2004 Nanostructures: Theory and Modeling (Berlin: Springer)
[2] Harrison P 2010 Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (3rd edn.) (UK: Wiley)
[3] Dzyubenko A B and Yablonskii A L;1996 Phys. Rev. B 53 16355
[4] Milanovic V and Ikonic Z;1989 Phys. Rev. B 39 7982
[5] Parascandolo G, Cantele G, Ninno D and Iadonisi G;2003 Phys. Rev. B 68 245318
[6] Bednarek S, Szafran B and Adamowski J;1999 Phys. Rev. B 59 13036
[7] Bulut P, Erdogan I and Akbas H;2014 Physica E 63 299
[8] Ghazi H E and Jorio A;2014 Physica B 432 64
[9] Safarpour Gh, Novzari M, Izadi M A, Niknam E and Barati M;2014 Physica B 436 117
[10] Peter A J;2008 Solid State Commun. 147 296
[11] Jeyam G and Navaneethakrishnan K;2003 Solid State Commun. 126 681
[12] Merchancano S T P, Franco R and Valencia J S;2008 Microelect. J. 39 383
[13] Barseghyan M G, Kirakosyan A A and Duque C A;2009 Eur. Phys. J. B 72 521
[14] Xia C, Liu Y and Wei S;2008 Appl. Surf. Sci. 254 3479
[15] Karimi M J, Rezaei G and Nazari M;2014 J. Lumin. 145 55
[16] Rezaei G and Kish S S;2012 Physica E 45 56
[17] Sivakami A and Mahendran M;2010 Physica B 405 1403
[18] Khordad R and Fathizadeh N;2012 Physica B 407 1301
[19] Sivakami A, Jeice A R and Navaneethakrishnan K;2010 Int. J. Mod. Phys. B 24 5561
[20] Bella R S D and Navaneethakrishnan K;2004 Solid State Commun. 130 773
[21] Samara G A;1983 Phys. Rev. B 27 3494
[22] Adachi S 1994 GaAs and Related Materials (1st edn.) (Singapore: World Scientific)
[23] Jeice A R and Wilson K S J 2013 J. Nanostruct. 3 347
[24] Jeice A R and Navaneethakrishnan K;2009 Braz. J. Phys. 39 526
[25] Sivakami A and Gayathri V;2013 Superlatt. Microstruct. 58 218
[26] Chaudhuri S and Bajaj K K;1984 Phys. Rev. B 29 1803
[27] Benedictal A, Sukumar B and Navaneethakrishanan K;1993 Phys. Stat. Sol. 178 167
[28] Sadeghi E and Hosseini F 2012 J. Basic Appl. Phys. 1 66
[29] Jeice A R and Wilson K S J;2014 Indian J. Phys. 88 1031
[30] Sivakami A and Navaneethakrishnan K;2008 Physica E 40 649
[31] Peter A J;2005 Physica E 28 225
[32] Rezaei G, Doostimotlagh N A and Vaseghi B;2011 Physica E 43 1087
[33] Rezaei G, Doostimotlagh N A and Vaseghi B;2011 Commun. Theor. Phys. 56 377
[34] Kumar T P, Ramesh P and Ram S D G 2011 Dig. J. Nanomater. Bios. 6 683
[1] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[2] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[3] Polaron effect on the optical rectification in spherical quantum dots with electric field
Zhen-Yu Feng(冯振宇), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2016, 25(10): 107804.
[4] Lifetime of resonant state in a spherical quantum dot
Li Chun-Lei(李春雷) and Xiao Jing-Lin(肖景林). Chin. Phys. B, 2007, 16(1): 67-71.
No Suggested Reading articles found!