Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050310    DOI: 10.1088/1674-1056/23/5/050310
GENERAL Prev   Next  

Measurement-induced disturbance in Heisenberg XY spin model with Dzialoshinskii-Moriya interaction under intrinsic decoherence

Shen Cheng-Gao (沈诚诰), Zhang Guo-Feng (张国锋), Fan Kai-Ming (樊开明), Zhu Han-Jie (朱汉杰)
Department of Physics, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
Abstract  Quantum correlations measured by measurement-induced disturbance (MID) in a two-qubit Heisenberg XY spin model with Dzialoshinskii-Moriya (DM) interaction under intrinsic decoherence are investigated. MID is studied under various circumstances and the influences of the external dependencies on the final quantum state which has stable MID are discussed. Two kinds of initial quantum states are considered as well as different conclusions. MID appears to decay periodically during the processing of intrinsic decoherence; both DM interaction and intrinsic decoherence have a negative impact on the correlations. The MID of the stable state depends on several factors, except the parameter of the intrinsic decoherence. Moreover, we find a special initial state that is able to maintain the maximum quantum correlations during the processing of intrinsic decoherence.
Keywords:  intrinsic decoherence      measurement-induced disturbance      quantum correlations      dzialoshinskii-Moriya interaction  
Received:  17 September 2013      Revised:  29 October 2013      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174024, 61227902, and 11174358), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. YWF-13-D2-JC-19), and the Beijing City Youth Talent Plan, China.
Corresponding Authors:  Zhang Guo-Feng     E-mail:  gf1978zhang@buaa.edu.cn
About author:  03.67.Mn; 03.65.Yz; 03.65.Ud

Cite this article: 

Shen Cheng-Gao (沈诚诰), Zhang Guo-Feng (张国锋), Fan Kai-Ming (樊开明), Zhu Han-Jie (朱汉杰) Measurement-induced disturbance in Heisenberg XY spin model with Dzialoshinskii-Moriya interaction under intrinsic decoherence 2014 Chin. Phys. B 23 050310

[1] Zhang G F, Jiang Z T and Abliz A 2011 Ann. Phys. 326 867
[2] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[3] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
[4] Nielson M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[5] Harold O and Woyciech H Z 2001 Phys. Rev. Lett. 88 017901
[6] Bennett C H, DiVincenzo D P, Fuchs C A, Mor Tal, Rains E, Shor P W, Smolin J A and Wootters W K 1999 Phys. Rev. A 59 1070
[7] Piani M, Christand M, Mora C E and Horodecki P 2009 Phys. Rev. Lett. 102 250503
[8] Auyuanet A and Davidovich L 2010 Phys. Rev. A 82 032112
[9] Luo S 2008 Phys. Rev. A 77 022301
[10] Feldman E B and Zenchuk A I 2011 JETP Lett. 93 459
[11] Altintas F 2010 Opt. Commun. 283 5264
[12] Felman E B and Pyrkov A N 2008 JETP Lett. 88 398
[13] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[14] Zhou T, Cui J and Long G L 2011 Phys. Rev. A 84 062105
[15] Qiu L, Tang G, Han K, Yang X, Wu Y and Ye B 2012 Physica E 46 218
[16] Cheng W W, Shan C J, Sheng Y B, Gong L Y, Zhao S M and Zheng B Y 2012 Physica E 44 1320
[17] Abdel-Aty M, Larson J, Eleuch H and Obada A-S F 2011 Physica E 43 1625
[18] Zhong P H and Man K L 2004 Chin. Phys. Lett. 21 424
[19] Guo S X and Li F X 2004 Chin. Phys. Lett. 21 497
[20] Mohamed A B A 2012 Ann. Phys. 327 3130
[21] Ali M, Rau A R and Alber G 2010 Phys. Rev. A 81 042105
[22] Xu J 2012 Phys. Lett. A 376 320
[23] Kuznetsova E I and Zenchuk A I 2012 Phys. Lett. A 376 1029
[24] Jiang F J, Lv H J, Yan X H and Shi M J 2013 Chin. Phys. B 22 040303
[25] Ji Y H and Liu Y M 2013 Chin. Phys. B 22 020305
[26] Fan K M and Zhang G F 2013 Acta Phys. Sin. 62 130301 (in Chinese)
[27] Luo S 2011 Phys. Rev. A 84 052309
[28] Milburn G J 1991 Phys. Rev. A 44 5401
[29] Moya-Cessa H, Buzek V, Kim M S and Knight P L 1993 Phys. Rev. A 48 3900
[30] Xu J B and Zou X B 1999 Phys. Rev. A 60 4743
[31] Obada A-S F and Hessian H A 2004 J. Opt. Soc. Am. B 21 1535
[1] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[2] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[3] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[4] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[5] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪) Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), and Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
[6] Relations between tangle and I concurrence for even n-qubit states
Xin-Wei Zha(查新未), Ning Miao(苗宁), Ke Li(李轲). Chin. Phys. B, 2019, 28(12): 120304.
[7] Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence
Hong-ying Yang(杨洪应), Qiang Zheng(郑强), Qi-jun Zhi(支启军). Chin. Phys. B, 2017, 26(1): 010601.
[8] Effects of intrinsic decoherence on various correlations and quantum dense coding in a two superconducting charge qubit system
Wang Fei (王飞), Maimaitiyiming-Tusun (麦麦提依明·吐孙), Parouke-Paerhati (帕肉克·帕尔哈提), Ahmad-Abliz (艾合买提·阿不力孜). Chin. Phys. B, 2015, 24(9): 090307.
[9] Dynamical decoupling pulses on the quantum correlations for the system of superconducting quantum circuit
Wang Dong-Mei (王冬梅), Qian Yi (钱懿), Xu Jing-Bo (许晶波), Yu You-Hong (俞攸红). Chin. Phys. B, 2015, 24(11): 110304.
[10] Quantum correlations in a two-qubit anisotropic Heisenberg XYZ chain with uniform magnetic field
Li Lei (李磊), Yang Guo-Hui (杨国晖). Chin. Phys. B, 2014, 23(7): 070306.
[11] Correlation dynamics of a qubit–qutrit system in a spin-chain environment with Dzyaloshinsky–Moriya interaction
Yang Yang (杨阳), Wang An-Min (王安民). Chin. Phys. B, 2014, 23(2): 020307.
[12] Quantum correlation switches for dipole arrays
Li Yan-Jie (李艳杰), Liu Jin-Ming (刘金明), Zhang Yan (张燕). Chin. Phys. B, 2014, 23(11): 110306.
[13] Measurement-induced disturbance between two atoms in Tavis–Cummings model with dipole–dipole interaction
Zhang Guo-Feng (张国锋), Wang Xiao (王骁), Lü Guang-Hong (吕广宏). Chin. Phys. B, 2014, 23(10): 104204.
[14] Non-Markovian decoherent quantum walks
Xue Peng (薛鹏), Zhang Yong-Sheng (张永生). Chin. Phys. B, 2013, 22(7): 070302.
[15] Correlation dynamics of two-parameter qubit-qutrit states under decoherence
Yuan Hao (袁浩), Wei Lian-Fu (韦联福). Chin. Phys. B, 2013, 22(5): 050303.
No Suggested Reading articles found!