Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 108802    DOI: 10.1088/1674-1056/24/10/108802
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

GaInP/GaAs tandem solar cells with highly Te- and Mg-doped GaAs tunnel junctions grown by MBE

Zheng Xin-He (郑新和)a b, Liu San-Jie (刘三姐)a, Xia Yu (夏宇)a, Gan Xing-Yuan (甘兴源)b, Wang Hai-Xiao (王海啸)b, Wang Nai-Ming (王乃明)b, Yang Hui (杨辉)b
a Department of Physics, College of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China;
b Key Laboratory of Nano-Devices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract  We report a GaInP/GaAs tandem solar cell with a novel GaAs tunnel junction (TJ) with using tellurium (Te) and magnesium (Mg) as n- and p-type dopants via dual-filament low temperature effusion cells grown by molecular beam epitaxy (MBE) at low temperature. The test Te/Mg-doped GaAs TJ shows a peak current density of 21 A/cm2. The tandem solar cell by the Te/Mg TJ shows a short-circuit current density of 12 mA/cm2, but a low open-circuit voltage range of 1.4 V~1.71 V under AM1.5 illumination. The secondary ion mass spectroscopy (SIMS) analysis reveals that the Te doping is unexpectedly high and its doping profile extends to the Mg doping region, thus possibly resulting in a less abrupt junction with no tunneling carriers effectively. Furthermore, the tunneling interface shifts from the intended GaAs n++ /p++ junction to the AlGaInP/GaAs junction with a higher bandgap AlGaInP tunneling layers, thereby reducing the tunneling peak. The Te concentration of ~ 2.5 × 1020 in GaAs could cause a lattice strain of 10-3 in magnitude and thus a surface roughening, which also negatively influences the subsequent growth of the top subcell and the GaAs contacting layers. The doping features of Te and Mg are discussed to understand the photovoltaic response of the studied tandem cell.
Keywords:  Te doping      Mg doping      GaAs tunnel junction      GaInP/GaAs tandem solar cell      molecular beam epitaxy  
Received:  18 March 2015      Revised:  28 April 2015      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  88.40.jm (Thin film III-V and II-VI based solar cells)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  03.65.Xp (Tunneling, traversal time, quantum Zeno dynamics)  
Fund: Project supported by the SINANO-SONY Joint Program (Grant No. Y1AAQ11001), the National Natural Science Foundation of China (Grant No. 61274134), the USCB Start-up Program (Grant No. 06105033), and the International Cooperation Projects of Suzhou City, China (Grant No. SH201215).
Corresponding Authors:  Zheng Xin-He     E-mail:  xinhezheng@ustb.edu.cn;xhzheng2009@sinano.ac.cn

Cite this article: 

Zheng Xin-He (郑新和), Liu San-Jie (刘三姐), Xia Yu (夏宇), Gan Xing-Yuan (甘兴源), Wang Hai-Xiao (王海啸), Wang Nai-Ming (王乃明), Yang Hui (杨辉) GaInP/GaAs tandem solar cells with highly Te- and Mg-doped GaAs tunnel junctions grown by MBE 2015 Chin. Phys. B 24 108802

[1] Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, Tibbits T, Oliva E, Siefer G, Schachtner M, Wekkeli A, Krause R, Piccin M, Blanc N, Drazek C, Guiot E, Ghyselen B, Salvetat T, Tauzin A, Signamarcheix T, Dobrich A, Hannappe T and Schwarzburg K 2014 Prog. Photovolt: Res. Appl. 22 277
[2] Chiu P T, Law D C, Woo R L, Singer S B, Bhusari D, Hong W D, Zakaria A, Boisvert J, Mesropian S, King R and Karam N H 2014 IEEE J. Photovol. 4 493
[3] Olson J M, Kurtz S R and Kibbler A E 1990 Appl. Phys. Lett. 56 623
[4] Haapamaa J, Pessa M and Roche G 2001 Sol. Energy Mater. Sol. Cells 66 573
[5] Leinonen P, Pessa M, Haapamaa J and Rakennus K 2000 Proc. 28th IEEE Photovoltaic Specialists Conference, September 15-22, 2000, Anchorage, AK, p. 1177
[6] Kmaci B, Ozen Y, Asar T, Cetin S S, Memmedli T, Kasap M and Ozcelik S 2013 J. Mater Sci: Mater. Electron. 24 3269
[7] Sugiura H, Amano C, Yamamoto A and Yamaguchi M 1988 Jpn. J. Appl. Phys. 27 269
[8] Zhu Z, Abe T, Sasaki Y, Fukuma Y, Banno K, Yao T, Takehara J and Kitagawa M 1994 Sol. Energy Mater. Sol. Cells 35 61
[9] Kunitsyna E, Lvova T V, Dunaevskii M, Terentev Y, Semenov A, Solovev V, Meltser B, Ivanov S and Yakovlev Y 2010 Appl. Surf. Sci. 256 5644
[10] Jackrel D, Bank S, Yuen H, Wistey M and Harris J J 2007 J. Appl. Phys. 101 114916
[11] Derkacs D, Jones-Albertus R, Suarez F and Fidaner O 2012 J. Photon. Ener. 2 021805
[12] Kamp M, Morsch G, Graber J and Luth H 1994 J. Appl. Phys. 76 1974
[13] Kang H K, Park S H, Jun D H, Kim C Z, Song K M, Park W, Ko C G and Kim H 2011 Semicond. Sci. Technol. 26 075009
[14] Komsa H P, Arola E, Pakarinen J, Peng C S and Rantala T T 2009 Phys. Rev. B 79 115208
[15] Pakarinen J, Peng C S, Polojarvi V, Tukiainen A, Korpijarvi V M, Puustinen J, Pessa M, Laukkanen P, Likonen J and Arola E 2008 Appl. Phys. Lett. 93 052102
[16] Chen C W, Wu M C, Lu S C and Chang C C 1993 Jpn. J. Appl. Phys. 32 2725
[17] Jiang D S, Makita Y, Ploog K and Queisser H J 1982 J. Appl. Phys. 53 999
[18] Kim J S, Bae I H, Leem J Y, Noh S K, Lee J I, Kim J S, Kim S M, Son J S and Jeon M 2001 J. Crystal Growth 226 52
[19] Lewis C R, Ford C W and Werthen J G 1984 Appl. Phys. Lett. 45 895
[20] Tosaporn C 2007 "Impurity doping effect in compound semiconductors", Ph. D. Dissertation (Finland: Wasada University)
[21] Gan X, Zheng X, Wu Y, Lu S, Yang H, Arimochi M, Watanabe T, Ikeda M, Nomachi I, Yoshida H and Uchida S 2014 Jpn. J. Appl. Phys. 53 021101
[22] Garcia I, Rey-Stolle I, Galiana B and Algora C 2009 Appl. Phys. Lett. 94 053509
[23] King R R, Law D C, Edmondson K M, Fetzer C M, Kinsey G S, Yoon H, Sherif R A and Karam N H 2007 Appl. Phys. Lett. 90 183516
[24] Geisz J F, Friedman D J, Ward J S, Duda A, Olavarria W J, Moriarty T E, Kiehl J T, Romero M J, Norman A G and Jones K M 2008 Appl. Phys. Lett. 93 123505
[25] Garcia I, Rey-Stolle I and Algora C 2012 J. Phys. D: Appl. Phys. 45 045101
[26] Takamoto T, Ikeda E and Kurita H 1997 Appl. Phys. Lett. 70 381
[27] Lu S, Ji L, He W, Dai P, Yang H, Arimochi M, Yoshida H, Uchida S and Ikeda M 2011 Nano. Res. Lett. 6 576
[28] Anderson B L and Richard L A 2005 Fundamentals of Semiconductor Devices (New York: McGraw-Hill) pp. 278, 280
[29] Zheng X H, Wang Y T, Feng Z H, Yang H, Chen H, Zhou J M and Liang J W 2003 J. Crystal Growth 250 345
[30] Jeffrey T T 1993 Materials Fundamentals of Molecular Beam Epitaxy (Utah: Academic Press) pp. 166, 193
[31] Zhang Z Y and Max G L 1999 Morphological Organization in Epitaxial Growth and Removal (Singapore: World Scientific) p. 168
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[4] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[5] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[6] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[7] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[8] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[9] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[10] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[11] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[12] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[13] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
[14] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[15] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
No Suggested Reading articles found!