INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
GaInP/GaAs tandem solar cells with highly Te- and Mg-doped GaAs tunnel junctions grown by MBE |
Zheng Xin-He (郑新和)a b, Liu San-Jie (刘三姐)a, Xia Yu (夏宇)a, Gan Xing-Yuan (甘兴源)b, Wang Hai-Xiao (王海啸)b, Wang Nai-Ming (王乃明)b, Yang Hui (杨辉)b |
a Department of Physics, College of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; b Key Laboratory of Nano-Devices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China |
|
|
Abstract We report a GaInP/GaAs tandem solar cell with a novel GaAs tunnel junction (TJ) with using tellurium (Te) and magnesium (Mg) as n- and p-type dopants via dual-filament low temperature effusion cells grown by molecular beam epitaxy (MBE) at low temperature. The test Te/Mg-doped GaAs TJ shows a peak current density of 21 A/cm2. The tandem solar cell by the Te/Mg TJ shows a short-circuit current density of 12 mA/cm2, but a low open-circuit voltage range of 1.4 V~1.71 V under AM1.5 illumination. The secondary ion mass spectroscopy (SIMS) analysis reveals that the Te doping is unexpectedly high and its doping profile extends to the Mg doping region, thus possibly resulting in a less abrupt junction with no tunneling carriers effectively. Furthermore, the tunneling interface shifts from the intended GaAs n++ /p++ junction to the AlGaInP/GaAs junction with a higher bandgap AlGaInP tunneling layers, thereby reducing the tunneling peak. The Te concentration of ~ 2.5 × 1020 in GaAs could cause a lattice strain of 10-3 in magnitude and thus a surface roughening, which also negatively influences the subsequent growth of the top subcell and the GaAs contacting layers. The doping features of Te and Mg are discussed to understand the photovoltaic response of the studied tandem cell.
|
Received: 18 March 2015
Revised: 28 April 2015
Accepted manuscript online:
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
88.40.jm
|
(Thin film III-V and II-VI based solar cells)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
03.65.Xp
|
(Tunneling, traversal time, quantum Zeno dynamics)
|
|
Fund: Project supported by the SINANO-SONY Joint Program (Grant No. Y1AAQ11001), the National Natural Science Foundation of China (Grant No. 61274134), the USCB Start-up Program (Grant No. 06105033), and the International Cooperation Projects of Suzhou City, China (Grant No. SH201215). |
Corresponding Authors:
Zheng Xin-He
E-mail: xinhezheng@ustb.edu.cn;xhzheng2009@sinano.ac.cn
|
Cite this article:
Zheng Xin-He (郑新和), Liu San-Jie (刘三姐), Xia Yu (夏宇), Gan Xing-Yuan (甘兴源), Wang Hai-Xiao (王海啸), Wang Nai-Ming (王乃明), Yang Hui (杨辉) GaInP/GaAs tandem solar cells with highly Te- and Mg-doped GaAs tunnel junctions grown by MBE 2015 Chin. Phys. B 24 108802
|
[1] |
Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, Tibbits T, Oliva E, Siefer G, Schachtner M, Wekkeli A, Krause R, Piccin M, Blanc N, Drazek C, Guiot E, Ghyselen B, Salvetat T, Tauzin A, Signamarcheix T, Dobrich A, Hannappe T and Schwarzburg K 2014 Prog. Photovolt: Res. Appl. 22 277
|
[2] |
Chiu P T, Law D C, Woo R L, Singer S B, Bhusari D, Hong W D, Zakaria A, Boisvert J, Mesropian S, King R and Karam N H 2014 IEEE J. Photovol. 4 493
|
[3] |
Olson J M, Kurtz S R and Kibbler A E 1990 Appl. Phys. Lett. 56 623
|
[4] |
Haapamaa J, Pessa M and Roche G 2001 Sol. Energy Mater. Sol. Cells 66 573
|
[5] |
Leinonen P, Pessa M, Haapamaa J and Rakennus K 2000 Proc. 28th IEEE Photovoltaic Specialists Conference, September 15-22, 2000, Anchorage, AK, p. 1177
|
[6] |
Kmaci B, Ozen Y, Asar T, Cetin S S, Memmedli T, Kasap M and Ozcelik S 2013 J. Mater Sci: Mater. Electron. 24 3269
|
[7] |
Sugiura H, Amano C, Yamamoto A and Yamaguchi M 1988 Jpn. J. Appl. Phys. 27 269
|
[8] |
Zhu Z, Abe T, Sasaki Y, Fukuma Y, Banno K, Yao T, Takehara J and Kitagawa M 1994 Sol. Energy Mater. Sol. Cells 35 61
|
[9] |
Kunitsyna E, Lvova T V, Dunaevskii M, Terentev Y, Semenov A, Solovev V, Meltser B, Ivanov S and Yakovlev Y 2010 Appl. Surf. Sci. 256 5644
|
[10] |
Jackrel D, Bank S, Yuen H, Wistey M and Harris J J 2007 J. Appl. Phys. 101 114916
|
[11] |
Derkacs D, Jones-Albertus R, Suarez F and Fidaner O 2012 J. Photon. Ener. 2 021805
|
[12] |
Kamp M, Morsch G, Graber J and Luth H 1994 J. Appl. Phys. 76 1974
|
[13] |
Kang H K, Park S H, Jun D H, Kim C Z, Song K M, Park W, Ko C G and Kim H 2011 Semicond. Sci. Technol. 26 075009
|
[14] |
Komsa H P, Arola E, Pakarinen J, Peng C S and Rantala T T 2009 Phys. Rev. B 79 115208
|
[15] |
Pakarinen J, Peng C S, Polojarvi V, Tukiainen A, Korpijarvi V M, Puustinen J, Pessa M, Laukkanen P, Likonen J and Arola E 2008 Appl. Phys. Lett. 93 052102
|
[16] |
Chen C W, Wu M C, Lu S C and Chang C C 1993 Jpn. J. Appl. Phys. 32 2725
|
[17] |
Jiang D S, Makita Y, Ploog K and Queisser H J 1982 J. Appl. Phys. 53 999
|
[18] |
Kim J S, Bae I H, Leem J Y, Noh S K, Lee J I, Kim J S, Kim S M, Son J S and Jeon M 2001 J. Crystal Growth 226 52
|
[19] |
Lewis C R, Ford C W and Werthen J G 1984 Appl. Phys. Lett. 45 895
|
[20] |
Tosaporn C 2007 "Impurity doping effect in compound semiconductors", Ph. D. Dissertation (Finland: Wasada University)
|
[21] |
Gan X, Zheng X, Wu Y, Lu S, Yang H, Arimochi M, Watanabe T, Ikeda M, Nomachi I, Yoshida H and Uchida S 2014 Jpn. J. Appl. Phys. 53 021101
|
[22] |
Garcia I, Rey-Stolle I, Galiana B and Algora C 2009 Appl. Phys. Lett. 94 053509
|
[23] |
King R R, Law D C, Edmondson K M, Fetzer C M, Kinsey G S, Yoon H, Sherif R A and Karam N H 2007 Appl. Phys. Lett. 90 183516
|
[24] |
Geisz J F, Friedman D J, Ward J S, Duda A, Olavarria W J, Moriarty T E, Kiehl J T, Romero M J, Norman A G and Jones K M 2008 Appl. Phys. Lett. 93 123505
|
[25] |
Garcia I, Rey-Stolle I and Algora C 2012 J. Phys. D: Appl. Phys. 45 045101
|
[26] |
Takamoto T, Ikeda E and Kurita H 1997 Appl. Phys. Lett. 70 381
|
[27] |
Lu S, Ji L, He W, Dai P, Yang H, Arimochi M, Yoshida H, Uchida S and Ikeda M 2011 Nano. Res. Lett. 6 576
|
[28] |
Anderson B L and Richard L A 2005 Fundamentals of Semiconductor Devices (New York: McGraw-Hill) pp. 278, 280
|
[29] |
Zheng X H, Wang Y T, Feng Z H, Yang H, Chen H, Zhou J M and Liang J W 2003 J. Crystal Growth 250 345
|
[30] |
Jeffrey T T 1993 Materials Fundamentals of Molecular Beam Epitaxy (Utah: Academic Press) pp. 166, 193
|
[31] |
Zhang Z Y and Max G L 1999 Morphological Organization in Epitaxial Growth and Removal (Singapore: World Scientific) p. 168
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|