Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104104    DOI: 10.1088/1674-1056/24/10/104104
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunable wideband absorber based on resistively loaded lossy high-impedance surface

Dang Ke-Zheng (党可征), Shi Jia-Ming (时家明), Wang Jia-Chun (汪家春), Lin Zhi-Dan (林志丹), Wang Qi-Chao (王启超)
State Key Laboratory of Pulsed Power Laser, Electric Engineering Institute, Hefei 230037, China
Abstract  A lossy high-impedance surface comprised of two layers of resistive frequency selective surfaces is employed to design a tunable electromagnetic absorber. The tunability is realized through changing the composite unit cell by moving the top layer mechanically. To explain the absorbing mechanism, an equivalent circuit model with an interacting coefficient is proposed. Then, simulations and measurements are carried out and agree well with each other. Results show that the complex structure with a thickness less than λ0/4 is able to achieve a wideband absorption in a frequency range from 5.90 GHz to 19.73 GHz. Moreover, it is tunable in the operation frequency band.
Keywords:  frequency selective surface      high-impedance surface      microwave absorber      tunable  
Received:  09 January 2015      Revised:  26 March 2015      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.40.Rw (Metal-insulator-metal structures)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
Corresponding Authors:  Shi Jia-Ming     E-mail:  shijmeei@yahoo.com

Cite this article: 

Dang Ke-Zheng (党可征), Shi Jia-Ming (时家明), Wang Jia-Chun (汪家春), Lin Zhi-Dan (林志丹), Wang Qi-Chao (王启超) Tunable wideband absorber based on resistively loaded lossy high-impedance surface 2015 Chin. Phys. B 24 104104

[1] Knott E F, Shaeffer J F and Tuley M T 2004 Radar Cross Section (Raleigh NC: SciTech Publishing) pp. 297-356
[2] Fante R L and McCormack M T 1988 IEEE Trans. Antennas Propag. 36 1443
[3] Xu Y Q, Zhang H B, Zhou P H, Lu H P, Liang D F and Xie J L 2013 Acta Phys. Sin. 62 058103 (in Chinese)
[4] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[5] Ding F, Cui Y X, Ge X C, Jin Y and He S L 2012 Appl. Phys. Lett. 100 103506
[6] Xu Z C, Gao R M, Ding C F, Zhang Y T and Yao J Q 2014 Chin. Phys. Lett. 31 054205
[7] Butun S and Aydin K 2014 Opt. Express 22 19457
[8] Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E and Li J 2014 Chin. Phys. B 23 058102
[9] Wang J W, Wang J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y and Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese)
[10] Sievenpiper D, Zhang L J, Jimenez Broas R F, Alexópolous N G and Yablonovitch E 1999 IEEE Trans. Microw. Theory Technol. 47 2059
[11] Zhou L, Li H Q, Qin Y Q, Wei Z Y and Chan C T 2005 Appl. Phys. Lett. 86 101101
[12] Tang M C, Xiao S Q, Guan J, Bai Y Y, Gao S S and Wang B Z 2010 Chin. Phys. B 19 074214
[13] Cheng Y Z, Gong R Z, Nie Y and Wang X 2012 Chin. Phys. B 21 127801
[14] Costa F, Monorchio A and Manara G 2010 IEEE Trans. Anten. Propag. 58 1551
[15] Simms S and Fusco V 2006 Electron. Lett. 42 1197
[16] Lin B Q, Da X Y, Zhao S H, Meng W, Li F, Fang Y W and Wang J F 2014 Chin. Phys. B 23 067801
[17] Zhang H B, Zhou P H, Lu H P, Xu Y Q, Liang D F and Deng L J 2013 IEEE Trans. Anten. Propag. 61 976
[18] Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Räisänen A V and Tretyakov S A 2008 IEEE Trans. Anten. Propag. 56 1624
[19] Costa F, Genovesi S and Monorchio A 2009 Proc. IEEE Anten. Propag. Soc. Int. Symp., June 1-5, 2009, Charleston, SC, p. 1
[20] Luukkonen O, Costa F, Simovski C R, Monorchio A and Tretyakov S A 2009 IEEE Trans. Anten. Propag. 57 3119
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[3] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[4] Temperature-responded tunable metalenses based on phase transition materials
Jing-Jun Wu(伍景军), Feng Tang(唐烽), Jun Ma(马骏), Bing Han(韩冰), Cong Wei(魏聪), Qing-Zhi Li(李青芝), Jun Chen(陈骏), Ning Zhang(张宁), Xin Ye(叶鑫), Wan-Guo Zheng(郑万国), and Ri-Hong Zhu(朱日宏). Chin. Phys. B, 2022, 31(5): 054216.
[5] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[6] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[7] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[8] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[9] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[10] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[11] Electrically-manipulable electron-momentum filter based on antiparallel asymmetric double δ-magnetic-barrier semiconductor microstructure
Ge Tang (唐鸽), Ying-Jie Qin(覃英杰), Shi-Shi Xie(谢诗诗), and Meng-Hao Sun(孙梦豪). Chin. Phys. B, 2021, 30(10): 107303.
[12] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[13] Polarization control and tuning efficiency of tunable vertical-cavity surface-emitting laser with internal-cavity sub-wavelength grating
Xiao-Long Wang(王小龙), Yong-Gang Zou(邹永刚), Zhi-Fang He(何志芳), Guo-Jun Liu(刘国军), Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2020, 29(8): 084208.
[14] 575-fs passively mode-locked Yb:CaF2 ceramic laser
Cong Wang(王聪), Qian-Qian Hao(郝倩倩), Wei-Wei Li(李威威), Hai-Jun Huang(黄海军), Shao-Zhao Wang(王绍钊), Da-Peng Jiang(姜大朋), Jie Liu(刘杰), Bing-Chu Mei(梅炳初), Liang-Bi Su(苏良碧). Chin. Phys. B, 2020, 29(7): 074205.
[15] Compact NbN resonators with high kinetic inductance
Xing-Yu Wei(魏兴雨), Jia-Zheng Pan(潘佳政), Ya-Peng Lu(卢亚鹏), Jun-Liang Jiang(江俊良), Zi-Shuo Li(李子硕), Sheng Lu(卢盛), Xue-Cou Tu(涂学凑), Qing-Yuan Zhao(赵清源), Xiao-Qing Jia(贾小氢), Lin Kang(康琳), Jian Chen(陈健), Chun-Hai Cao(曹春海), Hua-Bing Wang(王华兵), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2020, 29(12): 128401.
No Suggested Reading articles found!