Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 048401    DOI: 10.1088/1674-1056/abd38e
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Design and optimization of nano-antenna for thermal ablation of liver cancer cells

Mohammad Javad Rabienejhad1, Azardokht Mazaheri2,†, and Mahdi Davoudi-Darareh3
1 Optics and Laser Science and Technology Research Center, Malek Ashtar University of Technology, Shahinshahr, Iran; 2 Department of Physics, University of Isfahan, Iran; 3 Faculty of Science, Malek Ashtar University of Technology, Shahinshahr, Iran
Abstract  One method of cancer therapy is to utilize nano-antenna for thermal ablation. In this method, the electromagnetic waves emitted from the nano-antenna are absorbed by the tissue and lead to heating of cancer cells. If temperature of cancer cells reaches a threshold, they will begin to die. For this purpose, an L-shaped frame nano-antenna (LSFNA) is designed to introduce into the biological tissue. Thus, the radiation characteristics of the LSFNA such as near and far-field intensities, directivity, and sensitivity to its gap width are studied to the optimization of the nano-antenna. The bio-heat and Maxwell equations are solved using the finite element method. To prevent damage to healthy tissues in this method, the antenna radiation must be completely controlled and performed carefully. Thus, penetration depth, special absorption rate, temperature distribution, and the fraction of tissue necrosis are analyzed in the biological tissue. That is why the design and optimization of the nano-antennas as a radiation source is important. Also, a pulsed source is used to excite the LSFNA. Furthermore, focusing and efficiency of the nano-antenna radiation on the cancer cell is tuned using an adjustable liquid crystal lens. The focus of this lens is changing under an electric field applied to its surrounding cathode.
Keywords:  cancer therapy      directivity      far-field intensity      hyperthermia      liver cancer      nano-antenna      thermal-ablation      tunable liquid crystal lens  
Received:  22 September 2020      Revised:  07 November 2020      Accepted manuscript online:  15 December 2020
PACS:  84.40.Ba (Antennas: theory, components and accessories)  
  64.70.mf (Theory and modeling of specific liquid crystal transitions, including computer simulation)  
  52.38.Mf (Laser ablation)  
  87.19.xj (Cancer)  
Corresponding Authors:  Corresponding author. E-mail: dokht2001@yahoo.com   

Cite this article: 

Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh Design and optimization of nano-antenna for thermal ablation of liver cancer cells 2021 Chin. Phys. B 30 048401

1 Goldberg S N, Grassi C J, Cardella J F, Charboneau J W, Dodd III G D, Dupuy D E, Gervais D A, Gillams A R, Kane R A and Lee Jr F T 2009 J. Vasc. Interv. Radiol. 20 S377
2 Jalali R, Munshi A and Arora B 2009 Neurol. India 57 13
3 Triesscheijn M, Baas P, Schellens J H M and Stewart F A 2006 Oncologist 11 1034
4 Durante M and Loeffler J S 2010 Nat. Rev. Clin. Oncol. 7 37
5 Kennedy J E 2005 Nat. Rev. Cancer 5 321
6 Conde J, Bao C, Cui D, Baptista P V and Tian F 2014 J. Control. Release 183 87
7 Abadeer N S and Murphy C J 2016 J. Phys. Chem. C 120 4691
8 Abbas M, Kessentini A, Loukil H, Muneer P, Ijyas V P T, Bushara S E and Wase M A 2019 Nanoscale Res. Lett. 14 289
9 O'Neal D P, Hirsch L R, Halas N J, Payne J D and West J L 2004 Cancer Lett. 209 171
10 Anger P, Bharadwaj P and Novotny L 2006 Phys. Rev. Lett. 96 113002
11 Bharadwaj P, Deutsch B and Novotny L 2009 Adv. Opt. Photon. 1 438
12 Liu Z K, Xie Y N, Geng L, Pan D K and Song P 2016 Chin. Phys. Lett. 33 27802
13 Li T-J, Liang J-G, Li H-P and Liu Y-Q 2016 Chin. Phys. B 25 94101
14 Li X, Sun J D, Huang H J, Zhang Z P, Jin L, Sun Y F, Popov V V and Qin H 2019 Chin. Phys. B 28 118502
15 Zhou T Y 2019 Acta Phys. Sin. 68 055201 (in Chinese)
16 Grober R D, Schoelkopf R J and Prober D E 1997 Appl. Phys. Lett. 70 1354
17 Crozier K B, Sundaramurthy A, Kino G S and Quate C F 2003 J. Appl. Phys. 94 4632
18 Muehlschlegel P, Eisler H-J, Martin O J F, Hecht B and Pohl D W 2005 Science 308 1607
19 Schuck P J, Fromm D P, Sundaramurthy A, Kino G S and Moerner W E 2005 Phys. Rev. Lett. 94 17402
20 Taminiau T H, Stefani F D, Segerink F B and Van Hulst N F 2008 Nat. Photon. 2 234
21 Wiley B J, Qin D and Xia Y 2010 ACS Nano 4 3554
22 Linden S, Kuhl J and Giessen H 2001 Phys. Rev. Lett. 86 4688
23 Castillo R C2013 Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition (Berlin: Springer Science & Business Media)
24 Vesseur E J R, De Waele R, Lezec H J, Atwater H A, Garc\'ía de Abajo F J and Polman A 2008 Appl. Phys. Lett. 92 83110
25 Henzie J, Lee J, Lee M H, Hasan W and Odom T W 2009 Annu. Rev. Phys. Chem. 60
26 Xia Y and Whitesides G M 1998 Annu. Rev. Mater. Sci. 28 153
27 Bender M, Plachetka U, Ran J, Fuchs A, Vratzov B, Kurz H, Glinsner T and Lindner F 2004 J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 22 3229
28 Lee M H, Huntington M D, Zhou W, Yang J C and Odom T W 2011 Nano Lett. 11 311
29 Odom T W, Thalladi V R, Love J C and Whitesides G M 2002 J. Am. Chem. Soc. 124 12112
30 Henzie J, Barton J E, Stender C L and Odom T W 2006 Acc. Chem. Res. 39 249
31 Webb J A, Ou Y C, Faley S, Paul E P, Hittinger J P, Cutright C C, Lin E C, Bellan L M and Bardhan R 2017 ACS Omega 2 3583
32 Ou Y C, Webb J A, Faley S, Shae D, Talbert E M, Lin S, Cutright C C, Wilson J T, Bellan L M and Bardhan R 2016 ACS Omega 1 234
33 DasGupta D, von Maltzahn G, Ghosh S, Bhatia S N, Das S K and Chakraborty S 2009 Appl. Phys. Lett. 95 233701
34 Nie S and Emory S R 1997 Science 275 1102
35 Kneipp K, Kneipp H, Itzkan I, Dasari R R and Feld M S 1999 Chem. Rev. 99 2957
36 Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667
37 Kühner L, Semenyshyn R, Hentschel M, Neubrech F, Tar\'ín C and Giessen H 2019 ACS Sensors 4 1973
38 Kim K, Yajima J, Oh Y, Lee W, Oowada S, Nishizaka T and Kim D 2012 Small 8 892
39 Thammawongsa N, Mitatha S and Yupapin P P 2013 Artif. Cells, Nanomedicine, Biotechnol. 41 21
40 Habash R W Y, Bansal R, Krewski D and Alhafid H T 2006 Crit. Rev. Biomed. Eng. 34
41 Lin J C, Hirai S, Chiang C L, Hsu W L, Su J L and Wang Y J 2000 IEEE Trans. Microw. Theory Technol. 48 2191
42 Ierardi A M, Floridi C, Fontana F, Chini C, Giorlando F, Piacentino F, Brunese L, Pinotti G, Bacuzzi A and Carrafiello G 2013 Radiol. Med. 118 949
43 Wang K, Tavakkoli F, Wang S and Vafai K 2015 J. Biomech. 48 930
44 Kundu B 2016 Appl. Math. Comput. 285 204
45 Talaee M R and Kabiri A L I 2017 J. Mech. Med. Biol. 17 1750072
46 Lin S M and Li C Y 2017 J. Mech. Med. Biol. 17 1750029
47 Deshazer G, Prakash P, Merck D and Haemmerich D 2017 Int. J. Hyperth. 33 74
48 Paul A K, Bandaru N K, Narasimhan A and Das S K 2014 International Heat Transfer Conference Digital Library (New York: Begel House Inc.)
49 Dickerson E B, Dreaden E C, Huang X, El-Sayed I H, Chu H, Pushpanketh S, McDonald J F and El-Sayed M A 2008 Cancer Lett. 269 57
50 Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J and West J L 2003 Proc. Natl. Acad. Sci. USA 100 13549
51 Jiang Y, Zhao J, Li W, Yang Y, Liu J and Qian Z 2017 Med. Biol. Eng. Comput. 55 2027
52 Curto S, Taj-Eldin M, Fairchild D and Prakash P 2015 Med. Phys. 42 6152
53 Selmi M, Bin Dukhyil A A and Belmabrouk H 2020 Appl. Sci. 10 211
54 Rattanadecho P and Keangin P 2013 Int. J. Heat Mass Transf. 58 457
55 Kuang M, Lu M D, Xie X Y, Xu H X, Mo L Q, Liu G J, Xu Z F, Zheng Y L and Liang J Y 2007 Radiology 242 914
56 Prakash P, Salgaonkar V A, Clif Burdette E and Diederich C J 2012 Med. Phys. 39 7338
57 Lubner M G, Brace C L, Hinshaw J L and Lee Jr F T 10.1016/j.jvir.2010.04.007 2010 J. Vasc. Interv. Radiol. 21 S192
58 Von Maltzahn G, Park J H, Agrawal A, Bandaru N K, Das S K, Sailor M J and Bhatia S N 2009 Cancer Res. 69 3892
59 Zhao W and Karp J M 2009 Nat. Mater. 8 453
60 Abbas A, El-Said M and Mahmoud S F2013 PIERS Proceedings
61 Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
62 Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J and Capasso F 2013 Nano Lett. 13 1257
63 Agio M and Al\`u A2013 Optical Antennas (Cambridge: Cambridge University Press)
64 Simanovskii D M, Mackanos M A, Irani A R, O'Connell-Rodwell C E, Contag C H, Schwettman H A and Palanker D V 2006 Phys. Rev. E 74 11915
65 Moritz A R and Henriques Jr F C1947 Am. J. Pathol. 23 695
66 Tehrani M H H, Soltani M, Kashkooli F M and Raahemifar K 2020 PLoS One 15 e0233219
67 Trujillo M and Berjano E 2013 Int. J. Hyperth. 29 590
68 Cavagnaro M, Amabile C, Bernardi P, Pisa S and Tosoratti N 2010 IEEE Trans. Biomed. Eng. 58 949
69 Shi J, Chen Z and Shi M 2009 Appl. Therm. Eng. 29 1792
70 Cho J, Yoon J, Cho S, Kwon K, Lim S, Kim D, Lee E S, Kim C H, Choi J W and Cheon C 2006 Int. J. cancer 119 593
71 Keangin P, Rattanadecho P and Wessapan T 2011 Int. Commun. Heat Mass Transf. 38 757
72 Wu X, Liu B and Xu B 2016 Appl. Therm. Eng. 107 501
73 Singh S and Repaka R 2017 Appl. Therm. Eng. 125 443
74 Jasiński M Mol. Cell. Biomech. 10 183
75 Novotny L 2007 Phys. Rev. Lett. 98 266802
76 Aizpurua J, Bryant G W, Richter L J, De Abajo F J G, Kelley B K and Mallouk T 2005 Phys. Rev. B 71 235420
77 Cubukcu E and Capasso F 2009 Appl. Phys. Lett. 95 201101
78 Dahmen C, Schmidt B and von Plessen G 2007 Nano Lett. 7 318
79 Massa E, Maier S A and Giannini V 2013 New J. Phys. 15 63013
80 Romero I, Aizpurua J, Bryant G W and De Abajo F J G 2006 Opt. Express 14 9988
81 Sundaramurthy A, Crozier K B, Kino G S, Fromm D P, Schuck P J and Moerner W E 2005 Phys. Rev. B 72 165409
82 Beversluis M R, Bouhelier A and Novotny L 2003 Phys. Rev. B 68 115433
83 Bouhelier A, Beversluis M, Hartschuh A and Novotny L 2003 Phys. Rev. Lett. 90 13903
84 BEA S and Teich M C1991 Wiley 313
85 Ji H S, Kim J H and Kumar S 2003 Opt. Lett. 28 1147
86 Sato S 1979 Jpn. J. Appl. Phys. 18 1679
87 Algorri J F, Zografopoulos D C, Urruchi V and Sànchez-Pena J M 2019 Crystals 9 272
88 Zohrabi M, Cormack R H and Gopinath J T 2016 Opt. Express 24 23798
[1] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[2] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[3] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[4] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[5] Hierarchical lichee-like Fe3O4 assemblies and their high heating efficiency in magnetic hyperthermia
Wen-Yu Li(李文宇), Wen-Tao Li(李文涛), Bang-Quan Li(李榜全), Li-Juan Dong(董丽娟), Tian-Hua Meng(孟田华), Ge Huo(霍格), Gong-Ying Liang(梁工英), and Xue-Gang Lu(卢学刚). Chin. Phys. B, 2021, 30(10): 104402.
[6] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[7] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[8] Radio-frequency-heating capability of silica-coated manganese ferrite nanoparticles
Qiu Qing-Wei (邱庆伟), Xu Xiao-Wen (徐晓文), He Mang (何芒), Zhang Hong-Wang (张洪旺). Chin. Phys. B, 2015, 24(6): 067503.
[9] Novel magnetic vortex nanorings/nanodiscs: Synthesis and theranostic applications
Liu Xiao-Li (刘晓丽), Yang Yong (杨勇), Wu Jian-Peng (吴建鹏), Zhang Yi-Fan (张艺凡), Fan Hai-Ming (樊海明), Ding Jun (丁军). Chin. Phys. B, 2015, 24(12): 127505.
[10] Performance of superconducting nanowire single-photon detector with the fan coupling antenna array
Wang Yu-Jue (王玉珏), Ding Tian (丁天), Ma Hai-Qiang (马海强), Jiao Rong-Zhen (焦荣珍). Chin. Phys. B, 2014, 23(6): 060308.
[11] Nanomagnetism:Principles, nanostructures, and biomedical applications
Yang Ce (杨策), Hou Yang-Long (侯仰龙), Gao Song (高松). Chin. Phys. B, 2014, 23(5): 057505.
[12] A thermo-fluid analysis in magnetic hyperthermia
Iordana Astefanoaei, Ioan Dumitru, Alexandru Stancu, Horia Chiriac. Chin. Phys. B, 2014, 23(4): 044401.
[13] Magnetic nanoparticle-based cancer therapy
Yu Jing (余靓), Huang Dong-Yan (黄冬雁), Muhammad Zubair Yousaf, Hou Yang-Long (侯仰龙), Gao Song (高松). Chin. Phys. B, 2013, 22(2): 027506.
[14] Magnetic-mediated hyperthermia for cancer treatment:Research progress and clinical trials
Zhao Ling-Yun (赵凌云), Liu Jia-Yi (刘嘉毅), Ouyang Wei-Wei (欧阳伟炜), Li Dan-Ye (李丹叶), Li Li (李立), Li Li-Ya(李利亚), Tang Jin-Tian (唐劲天). Chin. Phys. B, 2013, 22(10): 108104.
[15] In vivo hyperthermia effect induced by high-intensity pulsed ultrasound
Cui Wei-Cheng(崔炜程), Tu Juan(屠娟), Hwang Joo-Ha, Li Qian (李倩), Fan Ting-Bo(范庭波), Zhang Dong(章东), Chen Jing-Hai(陈静海), and Chen Wei-Zhong(陈伟中) . Chin. Phys. B, 2012, 21(7): 074301.
No Suggested Reading articles found!