Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 104201    DOI: 10.1088/1674-1056/24/10/104201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Absorption enhancement in thin film a-Si solar cells with double-sided SiO2 particle layers

Chen Le (陈乐)a b, Wang Qing-Kang (王庆康)a, Shen Xiang-Qian (沈向前)a, Chen Wen (陈文)b, Huang Kun (黄堃)a, Liu Dai-Ming (刘代明)a
a Key Laboratory for Thin Film and Micro-fabrication of the Ministry of Education, Department of Microelectronics and Nanoscience, Shanghai Jiao Tong University, Shanghai 200240, China;
b School of Physical Science and Technology Engineering, Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin 537400, China
Abstract  Light absorption enhancement is very important for improving the power conversion efficiency of a thin film a-Si solar cell. In this paper, a thin-film a-Si solar cell model with double-sided SiO2 particle layers is designed, and then the underlying mechanism of absorption enhancement is investigated by finite difference time domain (FDTD) simulation; finally the feasible experimental scheme for preparing the SiO2 particle layer is discussed. It is found that the top and bottom SiO2 particle layers play an important role in anti-reflection and light trapping, respectively. The light absorption of the cell with double-sided SiO2 layers greatly increases in a wavelength range of 300 nm-800 nm, and the ultimate efficiency increases more than 22% compared with that of the flat device. The cell model with double-sided SiO2 particle layers reported here can be used in varieties of thin film solar cells to further improve their performances.
Keywords:  thin film a-Si solar cells      light trapping      anti-reflection      SiO2 particle  
Received:  19 January 2015      Revised:  20 May 2015      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  07.60.-j (Optical instruments and equipment)  
  88.40.jm (Thin film III-V and II-VI based solar cells)  
  88.40.hm (Cost of production of solar cells)  
Fund: Project supported by the National High-Tech Research and Development Program of China (Grant No. 2011AA050518), the University Research Program of Guangxi Education Department, China (Grant No. LX2014288), and the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2013GXNSBA019014).
Corresponding Authors:  Wang Qing-Kang     E-mail:  wangqingkang@sjtu.edu.cn

Cite this article: 

Chen Le (陈乐), Wang Qing-Kang (王庆康), Shen Xiang-Qian (沈向前), Chen Wen (陈文), Huang Kun (黄堃), Liu Dai-Ming (刘代明) Absorption enhancement in thin film a-Si solar cells with double-sided SiO2 particle layers 2015 Chin. Phys. B 24 104201

[1] Lisha B, Bofei L and Jun F 2014 Journal of Power Sources 266 138
[2] Qin F F, Zhang H M, Wang C X, Guo C and Zhang J J 2014 Acta Phys. Sin. 63 198802 (in Chinese)
[3] Xu Z D, Yao Y, Brueckner E P, Li L F, Jiang J, Nuzzo R G and Liu G L 2014 Nanotechnology 25 305301
[4] Markvait T and Castaner L 2003 Practical handbook of photovoltaics fundamentals and applications (Cambridge: Cambridge University Press) p. 75
[5] Kang D J, Kang H, Cho C, Kim K H, Jeong S, Lee J Y and Kim B J 2013 Nanoscale 5 1858
[6] Wang X, Wang Q K and Tao H H 2010 Opt. Commun. 283 5231
[7] Dubey R S and Sarojini P L 2013 Journal of Electromagnetic Waves and Applications 27 309
[8] Garnett E and Yang P D 2010 Nano Lett. 10 1082
[9] Hong L, Rusli, Wang X C, Zheng H Y, Wang H and Yu H Y 2014 IEEE T Nanotechnol. 13 431
[10] Wu X, Liu Y M, Yu Z Y, Chen Z H, Gong H and Yin H Z 2013 J. Opt. 15 055012
[11] Peng K Q, Wang X, Li L, Wu X L and Lee S T 2010 J. Am. Chem. Soc. 132 6872
[12] Tao M, Zhou W D, Yang H J and Chen L 2007 Appl. Phys. Lett. 91 081118
[13] Wang Y, Chen L, Yang H, Guo Q, Zhou W and Tao M 2009 Solar Energy Materials & Solar Cells 93 85
[14] Jeong S, Hu L, Lee H R, Garnett E, Choi J W and Cui Y 2010 Nano Lett. 10 2989
[15] Grandidier J, Callahan D M, Munday J N and Atwater H A 2011 Adv. Mater. 23 1272
[16] Chen L, Wang Q K, Wangyang P H, Huang K and Shen X Q 2015 Chin. Phys. B 24 040202
[17] Huang K., Wang Q K, Yan X M, Yu M Y, Shen X Q and Chen L 2014 Opt. Commun. 32 169
[18] http://refractiveindex.info/
[19] Li J S, Yu H Y and Li Y L 2011 Energy Procedia 8 180
[20] http://rredc.nrel.gov/solar/spectra/am1.5
[21] Martins E R, Li J T, Liu Y K, Depauw V, Chen Z X, Zhou J Y and Krauss T F 2013 Nat. Commun. 4 2665
[22] Wang K X, Yu Z F, Liu V, Cui Y and Fan S H 2012 Nano Lett. 12 1616
[23] Zhu J, Yu Z F, Fan S H and Cui Y 2010 Mater. Sci. Eng. R 70 330
[24] Zhou W D, Tao M, Chen L and Yang H J 2007 J. Appl. Phys. 102 103105
[25] Chen C H, Juan P C, Liao M H, Tsai J L and Hwang H L 2011 Solar Energy Material and Solar Cells 95 2545
[26] Yik-Khoon E, Pisist K, Ronald A Arif and Hua T 2008 Photonics Global@Singaproe 2008, December 8–11, 2008, Singapore, 10472751
[1] Light trapping characteristics of glass substrate with hemisphere pit arrays in thin film Si solar cells
Chen Le (陈乐), Wang Qing-Kang (王庆康), Wangyang Pei-Hua (王阳培华), Huang Kun (黄堃), Shen Xiang-Qian (沈向前). Chin. Phys. B, 2015, 24(4): 040202.
[2] Improving light trapping and conversion efficiency of amorphous silicon solar cell by modified and randomly distributed ZnO nanorods
Jia Zhi-Nan (贾志楠), Zhang Xiao-Dan (张晓丹), Liu Yang (刘阳), Wang Yan-Feng (王延峰), Fan Jun (樊君), Liu Cai-Chi (刘彩池), Zhao Ying (赵颖). Chin. Phys. B, 2014, 23(4): 046106.
[3] High-contrast top-emitting organic light-emitting devices
Chen Shu-Fen (陈淑芬), Chen Chun-Yan (陈春燕), Yang Yang (杨洋), Xie Jun (谢军), Huang Wei (黄维), Shi Hong-Ying (石弘颖), Cheng Fan (程凡). Chin. Phys. B, 2012, 21(10): 108506.
No Suggested Reading articles found!