|
|
Compact NbN resonators with high kinetic inductance |
Xing-Yu Wei(魏兴雨)1,2, Jia-Zheng Pan(潘佳政)1,2, Ya-Peng Lu(卢亚鹏)1,2, Jun-Liang Jiang(江俊良)1,2, Zi-Shuo Li(李子硕)1,2, Sheng Lu(卢盛)1,2, Xue-Cou Tu(涂学凑)1,2, Qing-Yuan Zhao(赵清源)1,2, Xiao-Qing Jia(贾小氢)1,2, Lin Kang(康琳)1,2, Jian Chen(陈健)1,2, Chun-Hai Cao(曹春海)1, Hua-Bing Wang(王华兵)1,2, Wei-Wei Xu(许伟伟)1, Guo-Zhu Sun(孙国柱)1,2,†, and Pei-Heng Wu(吴培亨)1,2 |
1 Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 2 Purple Mountain Laboratories, Nanjing 211111, China |
|
|
Abstract We design and fabricate Λ/2 coplanar waveguide NbN resonators, the thickness and length of which are only several nanometers and hundred microns, respectively. The quality factor of such compact resonators can reach up to 7.5×104 at single photon power level at 30 mK with the resonance frequency around 6.835 GHz. In order to tune the resonant frequency, the resonator is terminated to the ground with a dc-SQUID. By tuning the magnetic flux in the dc-SQUID, the effective inductance of the dc-SQUID is varied, which leads to the change in the resonant frequency of the resonator. The tunability range is more than 30 MHz and the quality factor is about 3×103. These compact and tunable NbN resonators have potential applications in the quantum information processing, such as in the precision measurement, coupling and/or reading out the quantum states of qubits.
|
Received: 24 August 2020
Revised: 02 October 2020
Accepted manuscript online: 20 October 2020
|
PACS:
|
84.40.Dc
|
(Microwave circuits)
|
|
85.25.Dq
|
(Superconducting quantum interference devices (SQUIDs))
|
|
Fund: Project partially supported by the National Key R&D Program of China (Grant No. 2016YFA0301801), the National Natural Science Foundation of China (Grant Nos. 11474154 and 61521001), PAPD, Dengfeng Project B of Nanjing University, and the Fundamental Research Funds for the Central Universities, China (Grant No. 14380134). |
Corresponding Authors:
†Corresponding author. E-mail: gzsun@nju.edu.cn
|
Cite this article:
Xing-Yu Wei(魏兴雨), Jia-Zheng Pan(潘佳政), Ya-Peng Lu(卢亚鹏), Jun-Liang Jiang(江俊良), Zi-Shuo Li(李子硕), Sheng Lu(卢盛), Xue-Cou Tu(涂学凑), Qing-Yuan Zhao(赵清源), Xiao-Qing Jia(贾小氢), Lin Kang(康琳), Jian Chen(陈健), Chun-Hai Cao(曹春海), Hua-Bing Wang(王华兵), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨) Compact NbN resonators with high kinetic inductance 2020 Chin. Phys. B 29 128401
|
[1] Nakamura Y, Pashkin Y A and Tsai J S Nature 398 786 DOI: 10.1038/197181999 [2] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H Science 296 886 DOI: 10.1126/science.10693722002 [3] Martinis J M, Nam S, Aumentado J and Urbina C Phys. Rev. Lett. 89 117901 DOI: 10.1103/PhysRevLett.89.1179012002 [4] Chiorescu I, Nakamura Y, Harmans C J P M and J E Mooij Science 299 1869 DOI: 10.1126/science.10810452003 [5] Arute F, Arya K, Babbush R, et al Nature 574 505 DOI: 10.1038/s41586-019-1666-52019 [6] Wallraff A, Schuster D I, Blais A,Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J Nature 431 162 DOI: 10.1038/nature028512004 [7] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J Phys. Rev. A 69 062320 DOI: 10.1103/PhysRevA.69.0623202004 [8] Ashhab S, You J Q and Nori F Phys. Rev. A 79 032317 DOI: 10.1103/PhysRevA.79.0323172009 [9] Siddiqi I, Vijay R, Metcalfe M, Boaknin E and Devoret M H Phys. Rev. B 73 054510 DOI: 10.1103/PhysRevB.73.0545102005 [10] Leduc H G, Bumble B, Day P K, Eom B H, Gao J, Golwala S, Mazin B A, McHugh S, Merrill A, Moore D C, Noroozian O, Turner A D and Zmuidzinas J Appl. Phys. Lett. 97 102509 DOI: 10.1063/1.34804202010 [11] Goltsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C and Sobolewski R Appl. Phys. Lett. 79 705 DOI: 10.1063/1.13888682001 [12] Sobolewski R, Verevkin A, Gol'tsman G N, Lipatov A and Wilsher K IEEE Trans. Appl. Supercond. 13 1151 DOI: 10.1109/TASC.2003.8141782003 [13] Niepce D, Burnett J and Bylander J Phys. Rev. A 11 044014 DOI: 10.1103/PhysRevApplied.11.0440142019 [14] Watanabe K, Yoshida K, Aoki T and Kohjiro S Jpn. J. Appl. Phys. 33 5708 DOI: 10.1143/JJAP.33.57081994 [15] Tinkham M Physics Today 49 74 DOI: 10.1063/1.28078111996 [16] Mondal M, Kamlapure A, Chand M, Saraswat G, Kumar S, Jesudasan J, Benfatto L, Tripathi V and Raychaudhuri P Phys. Rev. Lett. 106 047001 DOI: 10.1103/PhysRevLett.106.0470012011 [17] Pozar D M1993 Microwave Engineering (Addison Wesley Publishing Company) [18] Goppl M, Fragner A, Baur M, Bianchetti R, Filip P S, Fink J M, Leek P J, Puebla G, Steffen L andWallraf A J. Appl. Phys. 104 113904 DOI: 10.1063/1.30108592008 [19] Oconnell A D, Ansmann M, Bialczak R C, Hofheinz M, Katz N, Lucero E, Mckenney C, Neeley M, Wang H, Weig E M, Cleland A N and Martinis J M Appl. Phys. Lett. 92 112903 DOI: 10.1063/1.28988872008 [20] Pan J, Jooya H Z, Sun G, Fan Y, Wu P, Telnov D A, Chu S and Han S Phys. Rev. B 96 174518 DOI: 10.1103/PhysRevB.96.1745182017 [21] Gao J, Daal M, Anastasios V, Shwetank K, Jonas Z, Bernard S, Benjamin A M, Peter K D and Henry G L Appl. Phys. Lett. 92 152505 DOI: 10.1063/1.29063732008 [22] Mattis D C and Bardeen J Phys. Rev. 111 412 DOI: 10.1103/PhysRev.111.4121958 [23] Gao J2008 The Physics of Superconducting Microwave Resonators (Ph.D. Thesis) (California: California Institute of Technology Pasadena) [24] Swenson L J, Day P K, Eom B H, Leduc H J, Llombart N, Mckenney C M, Noroozian O and Zmuidzinas J J. Appl. Phys. 113 104501 DOI: 10.1063/1.47948082013 [25] Burnett J, Sagar J, Kennedy O W, Warburton P A and Fenton J C Phys. Rev. Appl. 8 014039 DOI: 10.1103/PhysRevApplied.8.0140392017 [26] Palacios-Laloy A, Nguyen F, Mallet F, Bertet P, Vion D and Esteve D Journal of Low Temperature Physics 151 1034 DOI: 10.1007/s10909-008-9774-x2008 [27] Ambegaokar V and Baratoff A Phys. Rev. Lett. 11 104 DOI: 10.1103/PhysRevLett.11.1041963 [28] Sandberg M, Wilson C M, Persson F, Bauch T, Johansson G, Shumeiko V, Duty T and Delsing P Appl. Phys. Lett. 92 203501 DOI: 10.1063/1.29293672008 [29] Simmonds R W, Lang K M, Hite D A, Nam S, Pappas D P and Martinis J M Phys. Rev. Lett. 93 077003 DOI: 10.1103/PhysRevLett.93.0770032004 [30] Sun G, Wen X, Mao B, Zhou Z, Yu Y, Wu P and Han S Phys. Rev. B 82 132501 DOI: 10.1103/PhysRevB.82.1325012010 [31] Sun G, Wen X, Mao B, Chen J, Yu Y, Wu P and Han S Nat. Commun. 1 51 DOI: 10.1038/ncomms10502010 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|