Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler |
Huikai Xu(徐晖凯)1,†, Weiyang Liu(刘伟洋)2,†, Zhiyuan Li(李志远)1, Jiaxiu Han(韩佳秀)1, Jingning Zhang(张静宁)1, Kehuan Linghu(令狐克寰)1, Yongchao Li(李永超)1, Mo Chen(陈墨)1, Zhen Yang(杨真)1, Junhua Wang(王骏华)1, Teng Ma(马腾)1, Guangming Xue(薛光明)1,‡, Yirong Jin(金贻荣)1,¶, and Haifeng Yu(于海峰)1 |
1 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 2 Shenzhen Insititute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
Abstract High fidelity two-qubit gates are fundamental for scaling up the superconducting qubit number. We use two qubits coupled via a frequency-tunable coupler which can adjust the coupling strength, and demonstrate the CZ gate using two different schemes, adiabatic and diabatic methods. The Clifford based randomized benchmarking (RB) method is used to assess and optimize the CZ gate fidelity. The fidelities of adiabatic and diabatic CZ gates are 99.53(8)% and 98.72(2)%, respectively. We also analyze the errors induced by the decoherence. Comparing to 30 ns duration time of adiabatic CZ gate, the duration time of diabatic CZ gate is 19 ns, revealing lower incoherence error rate $r'_{incoherent, int} = 0.0197(5)$ compared to $r_{incoherent, int} = 0.0223(3)$.
|
Received: 29 December 2020
Revised: 04 February 2021
Accepted manuscript online: 19 March 2021
|
PACS:
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
85.25.Cp
|
(Josephson devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11890704, 12004042, and 11674376), the Natural Science Foundation of Beijing, China (Grant No. Z190012), the National Key Research and Development Program of China (Grant No. 2016YFA0301800), and the Key-Area Research and Development Program of Guang-Dong Province, China (Grant No. 2018B030326001). |
Corresponding Authors:
†These authors contributed equally. ‡Corresponding author. E-mail: xuegm@baqis.ac.cn §Corresponding author. E-mail: jinyr@baqis.ac.cn
|
Cite this article:
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰) Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler 2021 Chin. Phys. B 30 044212
|
1 Arute F, Arya K, Babbush R, et al. \hrefhttp://doi.org/10.1038/s41586-019-1666-5 2019 Nature 574 505 2 Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319 3 Barends R, Kelly J, Megrant A, et al. \hrefhttp://doi.org/10.1103/PhysRevLett.111.080502 2013 Phys. Rev. Lett. 111 080502 4 Schuch N and Siewert J 2003 Phys. Rev. A 67 032301 5 Strauch F W, Johnson P R, Dragt A J, Lobb C J, Anderson J R and Wellstood F C 2003 Phys. Rev. Lett. 91 167005 6 DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M and Schoelkopf R J 2009 Nature 460 240 7 Yamamoto T, Neeley M, Lucero E, Bialczak R C, Kelly J, Lenander M, Mariantoni M, O'Connell A D, Sank D, Wang H, Weides M, Wenner J, Yin Y, Cleland A N and Martinis J M 2010 Phy. Rev. B 82 184515 8 Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O'Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N and Martinis J M 2014 Nature 508 500 9 Caldwell S A, Didier N, Ryan C A, et al. \hrefhttp://doi.org/10.1103/PhysRevApplied.10.034050 2018 Phys. Rev. Applied 10 034050 10 Rigetti C, Blais A and Devoret M 2005 Phys. Rev. Lett. 94 240502 11 Leek P J, Filipp S, Maurer P, Baur M, Bianchetti R, Fink J M, Göppl M, Steffen L and Wallraff A 2009 Phys. Rev. B 79 180511 12 Hutchings M D, Hertzberg J B, Liu Y, Bronn N T, Keefe G A, Brink M, Chow J and Plourde B 2017 Phys. Rev. Applied 8 044003 13 Rigetti C and Devoret M 2010 Phys. Rev. B 81 134507 14 Chow J M, Còrcoles A D, Gambetta J M, Rigetti C, Johnson B R, Smolin J, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2011 Phys. Rev. Lett. 107 080502 15 Chow J M, Gambetta J M, Cross A W, Merkel S T, Rigetti C and Steffen M 2013 New J. Phys. 15 115012 16 Sheldon S, Magesan E, Chow J M and Gambetta J M 2016 Phys. Rev. A 93 060302 17 Poletto S, Gambetta J M, Merkel S T, Smolin J A, Chow J M, Còrcoles A D, Keefe G A, Rothwell M B, Rozen J R, Abraham D W, Rigetti C and Steffen M 2012 Phys. Rev. Lett. 109 240505 18 de Groot P C, Lisenfeld J, Schouten R N, Ashhab S, Lupascu A, Harmans C J P M and Mooij J E 2010 Nat. Phys. 6 763 19 de Groot P C, Ashhab S, Lupascu A, DiCarlo L, Nori F, Harmans C J P M and Mooij J E 2012 New J. Phys. 14 073038 20 Ganzhorn M, Salis G, Egger D J, Fuhrer A, Mergenthaler M, Müller C, Müller P, Paredes S, Pechal M, Werninghaus M and Filipp S 2020 Phys. Rev. Research 2 033447 21 Ashhab S, Matsuo S, Hatakenaka N and Nori F 2006 Phys. Rev. B 74 184504 22 Ashhab S and Nori F 2007 Phys. Rev. B 76 132513 23 Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Megrant A, Mutus J Y, O'Malley P J J, Quintana C M, Sank D, Vainsencher A, Wenner J, White T C, Geller M R, Cleland A N and Martinis J M 2014 Phys. Rev. Lett. 113 220502 24 Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D, Wang J, Orlando T P, Gustavsson S and Oliver W 2018 Phys. Rev. Applied 10 054062 25 Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J, Yan F and Yu D 2020 Phys. Rev. Lett. 125 240503 26 Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, Wu Y, Zhang H, Wang H, Song Y, Duan L and Sun L 2020 Phys. Rev. Applied 14 024070 27 Han X, Cai T, Li X, Wu Y, Ma Y, Wang J, Zhang H, Song Y and Duan L 2020 Phys. Rev. A 102 022619 28 Collodo M C, Herrmann J, Lacroix N, Andersen C K, Remm A, Lazar S, Besse J C, Walter T, Wallraff A, Eichler C 2020 Phys. Rev. Lett. 125 240502 29 McKay D C, Filipp S, Mezzacapo A, Magesan E, Chow J M and Gambetta J M 2016 Phys. Rev. Applied 6 064007 30 Moll N, Barkoutsos P, Bishop L S, et al. \hrefhttp://doi.org/10.1088/2058-9565/aab822 2018 Quantum Sci. Technol. 3 030503 32 Rol M A, Battistel F, Malinowski F K, Bultink C C, Tarasinski B M, Vollmer R, Haider N, Muthusubramanian N, Bruno A, Terhal B M and DiCarlo L 2019 Phys. Rev. Lett. 123 120502 33 Li S, Castellano A D, Wang S, Wu Y, Gong M, Yan Z, Rong H, Deng H, Zha C, Guo C, Sun L, Peng C, Zhu X B and Pan J W 2019 npj Quantum Information 5 84 34 Barends R, Quintana C M, Petukhov A G, et al. \hrefhttp://doi.org/10.1103/PhysRevLett.123.210501 2019 Phys. Rev. Lett. 123 210501 35 Foxen B, Neill C, Dunsworth A, et al. \hrefhttp://doi.org/10.1103/PhysRevLett.125.120504 2020 Phys. Rev. Lett. 125 120504 36 McKay D C, Wood C J, Sheldon S, Chow J M and Gambetta J M 2017 Phys. Rev. A 96 022330 37 Knill E, Leibfried D, Reichle R, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S and Wineland D J 2008 Phys. Rev. A 77 012307 38 Kelly J, Barends R, Campbell B, et al. \hrefhttp://doi.org/10.1103/PhysRevLett.112.240504 2014 Phys. Rev. Lett. 112 240504 39 Magesan E, Gambetta J M and Emerson J 2011 Phys. Rev. Lett. 106 180504 40 Magesan E, Gambetta J M, Johnson B R, Ryan C A, Chow J M, Merkel S T, da Silva M P, Keefe G A, Rothwell M B, Ohki T A, Ketchen M B and Steffen M 2012 Phys. Rev. Lett. 109 080505 41 O'Malley P J J, Kelly J, Barends R, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Fowler A G, Hoi I C, Jeffrey E, Megrant A, Mutus J, Neill C, Quintana C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Korotkov A N, Cleland A N and Martinis J M 2015 Phys. Rev. Applied 3 044009 42 Wallman J, Granade C, Harper R and Flammia S T 2015 New J. Phys. 17 113020 43 Feng G, Wallman J J, Buonacorsi B, Cho F H, Park D K, Xin T, Lu D, Baugh J and Laflamme R 2016 Phys. Rev. Lett. 117 260501 44 Rol M A, Battistel F, Malinowski F K, Bultink C C, Tarasinski B M, Vollmer R, Haider N, Muthusubramanian N, Bruno A, Terhal B M and DiCarlo L 2019 Phys. Rev. Lett. 123 120502 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|