CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electrically-manipulable electron-momentum filter based on antiparallel asymmetric double δ-magnetic-barrier semiconductor microstructure |
Ge Tang (唐鸽)1, Ying-Jie Qin(覃英杰)2,†, Shi-Shi Xie(谢诗诗)2, and Meng-Hao Sun(孙梦豪)2 |
1 College of Science, Shaoyang University, Hunan 422004, China; 2 College of Science, Guilin University of Technology, Guilin 541004, China |
|
|
Abstract We theoretically investigate the wave-vector filtering (WVF) effect for electrons in an antiparallel asymmetric double δ-magnetic-barrier microstructure under a bias, which can be fabricated experimentally by patterning two asymmetric ferromagnetic (FM) stripes on the top and the bottom of GaAs/AlxGa1-xAs heterostructure, respectively. It is found that an appreciable WVF effect appears because of an essentially two-dimensional (2D) process for electrons across this microstructure. WVF effect is found to be sensitive to the applied bias. WVF efficiency can be tuned by changing bias, which may lead to an electrically-controllable momentum filter for nanoelectronics device applications.
|
Received: 23 February 2021
Revised: 18 June 2021
Accepted manuscript online: 18 July 2021
|
PACS:
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
73.40.Gk
|
(Tunneling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864009). |
Corresponding Authors:
Ying-Jie Qin
E-mail: yijiqi20@126.com
|
Cite this article:
Ge Tang (唐鸽), Ying-Jie Qin(覃英杰), Shi-Shi Xie(谢诗诗), and Meng-Hao Sun(孙梦豪) Electrically-manipulable electron-momentum filter based on antiparallel asymmetric double δ-magnetic-barrier semiconductor microstructure 2021 Chin. Phys. B 30 107303
|
[1] Tanaka M, Harbison J P, DeBoeck J, Sands T, Philips B, Cheeks T L and Keramidas B G 1993 Appl. Phys. Lett. 62 1565 [2] Carmona H A, Geim A K, Nogaret A, Main PC, Foster T J, Henini M, Beaumont S P B and Blamire M G 1995 Phys. Rev. Lett. 74 3009 [3] Matulis A, Peeters F M and Vasilopoulos P 1994 Phys. Rev. Lett. 72 1518 [4] Nogaret A 2010 J. Phys. Condens. Matter 22 253201 [5] Lu M W, Zhang L D and Yan X H 2003 Nanotechnology 14 609 [6] Lu M W, Cao X L, Huang X H, Jiang Y Q and Yang S P 2016 Appl. Surf. Sci. 360 989 [7] Jiang Y Q, Lu M W, Huang X H, Yang S P and Tang Q 2016 J. Electron. Mater 45 2796 [8] Zhang L L, Lu M W, Yang S P and Tang Q 2016 Phys. Lett. A 380 3520 [9] Liang D H, Lu M W, Huang X H, Huang M R and Cao Z L 2019 Vacuum 169 108891 [10] Lu M W, Wang Z Y, Liang Y L and Li L Q 2013 Appl. Phys. Lett. 102 022410 [11] Lu M W, Wang Z Y, Liang Y L and Li L Q 2013 EPL 101 47001 [12] Lu M W, Cao X L, Huang X H, Jiang Y Q and Li S 2014 J. Appl. Phys. 115 17430 [13] Lu M W, Cao X L, Huang X H, Jiang Y A, Li S and Yang S P 2015 Superlattices Microstruct. 77 232 [14] Peeters F M and Li X Q 1998 Appl. Phys. Lett. 72 572 [15] Governale M and Boese D 2000 Appl. Phys. Lett. 77 3215 [16] Lu M W, Chen S Y, Huang X H and Zhang G L 2018 IEEE J. Electron Dev. 6 227 [17] Zeng Z Y and Claro F 2002 Phys. Rev. B 65 064207 [18] Papp G and Peeters F M 2004 J. Phys. Condens. Matter 16 8275 [19] Lu M W, Chen S Y and Zhang G L 2017 IEEE Trans. Electron. Dev. 64 1825 [20] Liu Y, Zhang L L, Lu M W, Zhou Y L and Li F 2017 Solid State Commun. 253 6 [21] Liu X H, Liu C S, Gong Y J and Tang Z H 2017 Philos. Mag. Lett. 97 150 [22] Zhang G L, Peng F F and Meng J S 2019 J. Supercond. Nov. Magn. 32 451 [23] Chen S Y, Cao X L, Huang M R and Liang D H 2019 Philos. Mag. Lett. 99 292 [24] Tang G, Liu G X and Ma W Y 2019 Mod. Phys. Lett. B 33 1950421 [25] Liu G X, Zhang G L, Ma W Y and Shen L H 2016 Solid State Commun. 231-232 6 [26] Zhai F, Xu H Q and Guo Y 2004 Phys. Rev. B 70 085308 [27] Liu G X, Zhang L L, Zhang G L and Shen L H 2017 Appl. Phys. A 123 241 [28] Liu X H, Liu C S, Xiao B F and Lu Y G 2018 Vacuum 148 173 [29] Kong Y H, Lu K Y, He Y P, Liu X F, Fu X and Li A H 2018 Appl. Phys. A 124 440 [30] Huang M R, Lu M W, Huang X H, Liang D H and Cao Z L 2020 Mod. Phys. Lett. B 34 2050080 [31] Huang M R, Lu M W, Huang X H, Liang D H and Cao Z L 2020 J. Supercond. Nov. Magn. 33 307 [32] Huang M R, Lu M W, Huang X H, Liang D H and Cao Z L 2020 Vacuum 180 109580 [33] Lu M W and Yang G J 2007 Phys. Lett. A 362 489 [34] Nogaret A, Bending S J and Henini M 2000 Phys. Rev. Lett. 84 2231 [35] Papp G and Peeters F M 2001 Appl. Phys. Lett. 78 2184 [36] Lu M W, Chen S Y, Zhang G L and Huang X H 2018 J. Phys. Condens. Matter 30 145302 [37] Liang D H, Lu M W, Huang X H, Huang M R and Cao Z L 2019 Vacuum 169 108891 [38] Cao Z L, Lu M W, Huang X H, Guo Q M and Yang S Q 2021 Superlattices Microstruct. 143 106545 [39] Guo Y, Wang H, Gu B L and Kawazoe Y 2000 Phys. Rev. B 61 1728 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|