Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 107303    DOI: 10.1088/1674-1056/ac1570
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electrically-manipulable electron-momentum filter based on antiparallel asymmetric double δ-magnetic-barrier semiconductor microstructure

Ge Tang (唐鸽)1, Ying-Jie Qin(覃英杰)2,†, Shi-Shi Xie(谢诗诗)2, and Meng-Hao Sun(孙梦豪)2
1 College of Science, Shaoyang University, Hunan 422004, China;
2 College of Science, Guilin University of Technology, Guilin 541004, China
Abstract  We theoretically investigate the wave-vector filtering (WVF) effect for electrons in an antiparallel asymmetric double δ-magnetic-barrier microstructure under a bias, which can be fabricated experimentally by patterning two asymmetric ferromagnetic (FM) stripes on the top and the bottom of GaAs/AlxGa1-xAs heterostructure, respectively. It is found that an appreciable WVF effect appears because of an essentially two-dimensional (2D) process for electrons across this microstructure. WVF effect is found to be sensitive to the applied bias. WVF efficiency can be tuned by changing bias, which may lead to an electrically-controllable momentum filter for nanoelectronics device applications.
Keywords:  magnetic microstructure      bias      wave vector filtering (WVF) effect      electrically-tunable momentum filter  
Received:  23 February 2021      Revised:  18 June 2021      Accepted manuscript online:  18 July 2021
PACS:  73.40.-c (Electronic transport in interface structures)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  73.40.Gk (Tunneling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864009).
Corresponding Authors:  Ying-Jie Qin     E-mail:  yijiqi20@126.com

Cite this article: 

Ge Tang (唐鸽), Ying-Jie Qin(覃英杰), Shi-Shi Xie(谢诗诗), and Meng-Hao Sun(孙梦豪) Electrically-manipulable electron-momentum filter based on antiparallel asymmetric double δ-magnetic-barrier semiconductor microstructure 2021 Chin. Phys. B 30 107303

[1] Tanaka M, Harbison J P, DeBoeck J, Sands T, Philips B, Cheeks T L and Keramidas B G 1993 Appl. Phys. Lett. 62 1565
[2] Carmona H A, Geim A K, Nogaret A, Main PC, Foster T J, Henini M, Beaumont S P B and Blamire M G 1995 Phys. Rev. Lett. 74 3009
[3] Matulis A, Peeters F M and Vasilopoulos P 1994 Phys. Rev. Lett. 72 1518
[4] Nogaret A 2010 J. Phys. Condens. Matter 22 253201
[5] Lu M W, Zhang L D and Yan X H 2003 Nanotechnology 14 609
[6] Lu M W, Cao X L, Huang X H, Jiang Y Q and Yang S P 2016 Appl. Surf. Sci. 360 989
[7] Jiang Y Q, Lu M W, Huang X H, Yang S P and Tang Q 2016 J. Electron. Mater 45 2796
[8] Zhang L L, Lu M W, Yang S P and Tang Q 2016 Phys. Lett. A 380 3520
[9] Liang D H, Lu M W, Huang X H, Huang M R and Cao Z L 2019 Vacuum 169 108891
[10] Lu M W, Wang Z Y, Liang Y L and Li L Q 2013 Appl. Phys. Lett. 102 022410
[11] Lu M W, Wang Z Y, Liang Y L and Li L Q 2013 EPL 101 47001
[12] Lu M W, Cao X L, Huang X H, Jiang Y Q and Li S 2014 J. Appl. Phys. 115 17430
[13] Lu M W, Cao X L, Huang X H, Jiang Y A, Li S and Yang S P 2015 Superlattices Microstruct. 77 232
[14] Peeters F M and Li X Q 1998 Appl. Phys. Lett. 72 572
[15] Governale M and Boese D 2000 Appl. Phys. Lett. 77 3215
[16] Lu M W, Chen S Y, Huang X H and Zhang G L 2018 IEEE J. Electron Dev. 6 227
[17] Zeng Z Y and Claro F 2002 Phys. Rev. B 65 064207
[18] Papp G and Peeters F M 2004 J. Phys. Condens. Matter 16 8275
[19] Lu M W, Chen S Y and Zhang G L 2017 IEEE Trans. Electron. Dev. 64 1825
[20] Liu Y, Zhang L L, Lu M W, Zhou Y L and Li F 2017 Solid State Commun. 253 6
[21] Liu X H, Liu C S, Gong Y J and Tang Z H 2017 Philos. Mag. Lett. 97 150
[22] Zhang G L, Peng F F and Meng J S 2019 J. Supercond. Nov. Magn. 32 451
[23] Chen S Y, Cao X L, Huang M R and Liang D H 2019 Philos. Mag. Lett. 99 292
[24] Tang G, Liu G X and Ma W Y 2019 Mod. Phys. Lett. B 33 1950421
[25] Liu G X, Zhang G L, Ma W Y and Shen L H 2016 Solid State Commun. 231-232 6
[26] Zhai F, Xu H Q and Guo Y 2004 Phys. Rev. B 70 085308
[27] Liu G X, Zhang L L, Zhang G L and Shen L H 2017 Appl. Phys. A 123 241
[28] Liu X H, Liu C S, Xiao B F and Lu Y G 2018 Vacuum 148 173
[29] Kong Y H, Lu K Y, He Y P, Liu X F, Fu X and Li A H 2018 Appl. Phys. A 124 440
[30] Huang M R, Lu M W, Huang X H, Liang D H and Cao Z L 2020 Mod. Phys. Lett. B 34 2050080
[31] Huang M R, Lu M W, Huang X H, Liang D H and Cao Z L 2020 J. Supercond. Nov. Magn. 33 307
[32] Huang M R, Lu M W, Huang X H, Liang D H and Cao Z L 2020 Vacuum 180 109580
[33] Lu M W and Yang G J 2007 Phys. Lett. A 362 489
[34] Nogaret A, Bending S J and Henini M 2000 Phys. Rev. Lett. 84 2231
[35] Papp G and Peeters F M 2001 Appl. Phys. Lett. 78 2184
[36] Lu M W, Chen S Y, Zhang G L and Huang X H 2018 J. Phys. Condens. Matter 30 145302
[37] Liang D H, Lu M W, Huang X H, Huang M R and Cao Z L 2019 Vacuum 169 108891
[38] Cao Z L, Lu M W, Huang X H, Guo Q M and Yang S Q 2021 Superlattices Microstruct. 143 106545
[39] Guo Y, Wang H, Gu B L and Kawazoe Y 2000 Phys. Rev. B 61 1728
[1] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[2] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[3] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[4] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[5] Dependence of short channel length on negative/positive bias temperature instability (NBTI/PBTI) for 3D FinFET devices
Ren-Ren Xu(徐忍忍), Qing-Zhu Zhang(张青竹), Long-Da Zhou(周龙达), Hong Yang(杨红), Tian-Yang Gai(盖天洋), Hua-Xiang Yin(殷华湘), and Wen-Wu Wang(王文武). Chin. Phys. B, 2022, 31(1): 017301.
[6] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
[7] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[8] Degradation and its fast recovery in a-IGZO thin-film transistors under negative gate bias stress
Jianing Guo(郭佳宁), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2021, 30(11): 118102.
[9] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[10] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[11] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[12] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
[13] Excitation-wavelength-dependent THz wave modulation via external bias electric field
Shi-Jia Feng(冯世嘉), Li-Quan Dong(董立泉), Dan-Ni Ma(马丹妮), Tong Wu(吴同), Yong Tan(谭永), Liang-Liang Zhang(张亮亮), Cun-Lin Zhang(张存林), Yue-Jin Zhao(赵跃进). Chin. Phys. B, 2020, 29(6): 064210.
[14] Evaluation of stress voltage on off-state time-dependent breakdown for GaN MIS-HEMT with SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Qiu-Ling Qiu(丘秋凌), Liu-An Li(李柳暗), Liang He(何亮), Jin-Wei Zhang(张津玮), Chen-Liang Feng(冯辰亮), Zhen-Xing Liu(刘振兴), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Yun-Liang Rao(饶运良), Zhi-Yuan He(贺致远), and Yang Liu (刘扬)†. Chin. Phys. B, 2020, 29(10): 107201.
[15] Negative gate bias stress effects on conduction and low frequency noise characteristics in p-type poly-Si thin-film transistors
Chao-Yang Han(韩朝阳), Yuan Liu(刘远), Yu-Rong Liu(刘玉荣), Ya-Yi Chen(陈雅怡), Li Wang(王黎), Rong-Sheng Chen(陈荣盛). Chin. Phys. B, 2019, 28(8): 088502.
No Suggested Reading articles found!