Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 018502    DOI: 10.1088/1674-1056/24/1/018502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Preparation of graphene on Cu foils by ion implantation with negative carbon clusters

Li Hui (李慧), Shang Yan-Xia (尚艳霞), Zhang Zao-Di (张早娣), Wang Ze-Song (王泽松), Zhang Rui (张瑞), Fu De-Jun (付德君)
School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education, Wuhan University, Wuhan 430072, China
Abstract  We report on few-layer graphene synthesized on Cu foils by ion implantation using negative carbon cluster ions, followed by annealing at 950 ℃ in vacuum. Raman spectroscopy reveals IG/I2D values varying from 1.55 to 2.38 depending on energy and dose of the cluster ions, indicating formation of multilayer graphene. The measurements show that the samples with more graphene layers have fewer defects. This is interpreted by graphene growth seeded by the first layers formed via outward diffusion of C from the Cu foil, though nonlinear damage and smoothing effects also play a role. Cluster ion implantation overcomes the solubility limit of carbon in Cu, providing a technique for multilayer graphene synthesis.
Keywords:  ion implantation      carbon clusters      graphene      copper foil  
Received:  05 May 2014      Revised:  26 August 2014      Accepted manuscript online: 
PACS:  85.40.Ry (Impurity doping, diffusion and ion implantation technology)  
  68.65.Pq (Graphene films)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11105100, 11205116, and 11375135) and the State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, China (Grant No. AWJ-M13-03).
Corresponding Authors:  Fu De-Jun     E-mail:  djfu@whu.edu.cn

Cite this article: 

Li Hui (李慧), Shang Yan-Xia (尚艳霞), Zhang Zao-Di (张早娣), Wang Ze-Song (王泽松), Zhang Rui (张瑞), Fu De-Jun (付德君) Preparation of graphene on Cu foils by ion implantation with negative carbon clusters 2015 Chin. Phys. B 24 018502

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Freitag M 2008 Nat. Nanotechnol. 3 455
[3] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[4] Castro N A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[5] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
[6] Emtsev K V, Bostwick A, Horn K, et al. 2009 Nat. Mater. 8 203
[7] Yu C, Li J, Liu Q B, Cai S J and Feng Z H 2014 Acta Phys. Sin. 63 038102 (in Chinese)
[8] Riedl C, Coletti C, Iwasaki T, Zakharov A A and Starke U 2009 Phys. Rev. Lett. 103 246804
[9] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon 45 1558
[10] Qin M M, Feng Y Y and Feng W 2013 Chin. Phys. B 23 028103
[11] Wang X, You H, Liu F, et al. 2009 Chemical Vapor Deposition 15 53
[12] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S and Kong J 2009 Nano Lett. 9 30
[13] Obraztsov A N 2009 Nat. Nanotechnol. 4 212
[14] Baraton L, He Z, Lee C S, Maurice J L, Cojocaru C S, Gourgues-Lorenzon A F, Lee Y H and Pribat D 2011 Nanotechnol. 22 085601
[15] Garaj S, Hubbard W and Golovchenko J A 2010 Appl. Phys. Lett. 97 183103
[16] Mun J H, Lim S K and Cho B J 2012 J. Electrochem. Soc. 159 G89
[17] Ferrari A C, Meyer J C, Scardaci V, et al. 2006 Phys. Rev. Lett. 97 187401
[18] Ferrari A C 2007 Solid State Commun. 143 47
[19] Malard L M, Pimenta M A, Dresselhaus G and Dresselhaus M S 2009 Phys. Rep. 473 51
[20] Dresselhaus M S, Jorio A, Souza Filho A G and Saito R 2010 Phil. Trans. R. Soc. A 13 5355
[21] Zhang R, Zhang Z, Wang Z, et al. 2012 Appl. Phys. Lett. 101 011905
[22] Wang Z S, Zhang Z D, Zhang R, et al. 2012 Chin. Sci. Bull. 57 3556
[23] Li X, Cai W, An J, et al. 2009 Science 324 1312
[24] Mattevi C, Kim H and Chhowalla M 2011 J. Mater. Chem. 21 3324
[25] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[26] Popok V N, Barke I, Campbell E E B and Meiwes-Broer K H 2011 Surf. Sci. Rep. 66 347
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!