Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 087503    DOI: 10.1088/1674-1056/23/8/087503
SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 Prev   Next  

Large coercivity and unconventional exchange coupling in manganese-oxide-coated manganese–gallium nanoparticles

Feng Jun-Ning (冯俊宁), Liu Wei (刘伟), Geng Dian-Yu (耿殿禹), Ma Song (马嵩), Yu Tao (余涛), Zhao Xiao-Tian (赵晓天), Dai Zhi-Ming (代志明), Zhao Xin-Guo (赵新国), Zhang Zhi-Dong (张志东)
Shenyang National Laboratory for Materials Science and International Center for Materials Physics, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  The microstructures and magnetic properties of nanoparticles, each composed of an antiferromagnetic (AFM) manganese-oxide shell and a ferromagnetic-like core of manganese-gallium (MnGa) compounds, are studied. The core-shell structure is confirmed by transmission electron microscope (TEM). The ferromagnetic-like core contains three kinds of MnGa binary compounds, i.e., ferrimagnetic (FI) D022-type Mn3Ga, ferromagnetic (FM) Mn8Ga5, and AFM D019-type Mn3Ga, of which the first two correspond respectively to a hard magnetic phase and to a soft one. Decoupling effect between these two phases is found at 1ow temperature, which weakens gradually with increasing temperature and disappears above 200 K. The exchange bias (EB) effect is observed simultaneously, which is caused by the exchange coupling between the AFM shell and FM-like core. A large coercivity of 6.96 kOe (1 Oe = 79.5775 A·m-1) and a maximum EB value of 0.45 kOe are achieved at 300 K and 200 K respectively.
Keywords:  nanoparticle      core-shell structure      exchange coupling  
Received:  04 September 2013      Revised:  20 March 2014      Accepted manuscript online: 
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  71.70.Gm (Exchange interactions)  
Fund: Projected supported by the National Basic Research Program of China (Grant No. 2010CB934603), the National High Technology Research and Development Program of China (863 Program) (Grant No. 2011AA03A402), and the National Natural Science Foundation of China (Grant Nos. 50931006, 51271177, and 51271179).
Corresponding Authors:  Liu Wei     E-mail:  wliu@imr.ac.cn

Cite this article: 

Feng Jun-Ning (冯俊宁), Liu Wei (刘伟), Geng Dian-Yu (耿殿禹), Ma Song (马嵩), Yu Tao (余涛), Zhao Xiao-Tian (赵晓天), Dai Zhi-Ming (代志明), Zhao Xin-Guo (赵新国), Zhang Zhi-Dong (张志东) Large coercivity and unconventional exchange coupling in manganese-oxide-coated manganese–gallium nanoparticles 2014 Chin. Phys. B 23 087503

[1] Herbst J F 1991 Rev. Mod. Phys. 163 819
[2] Coey J M D 2002 J. Magn. Magn. Mater. 248 441
[3] U.S. Department of Energy, Critical Materials Strategy, 2011
[4] Editorial 2011 Nat. Mater. 10 157
[5] Koch A J J, Hokkeling P, Steeg M G and Vos K J 1960 J. Appl. Phys. 31 S75
[6] Zhu L J, Nie S H, Meng K K, Pan D, Zhao J H and Zheng H Z 2012 Adv. Mater. 24 4547
[7] Mizukami S, Wu F, Sakuma F, Walowski J, Watanabe D, Kubota T, Zhang X, Naganuma H, Oogane M, Ando Y and Miyazaki T 2011 Phys. Rev. Lett. 106 117201
[8] Mizukami S, Kubota T, Wu F, Zhang X, Miyazaki T, Naganuma H, Oogane M, Sakuma A and Ando Y 2012 Phys. Rev. B 85 014416
[9] Sakuma A 1998 J. Magn. Magn. Mater. 187 105
[10] Balke B, Fecher G H, Winterlik J and Felser C 2007 Appl. Phys. Lett. 90 152504
[11] Winterlik J, Balke B, Fecher G H, Felser C, Alves M C M, Bernardi F and Morais J 2008 Phys. Rev. B 77 054406
[12] Zha C L, Dumas R K, Lau J W, Mohseni S M, Sani S R, Golosovsky I V, Monsen A F, Nogués J and Åkerman J 2011 J. Appl. Phys. 110 093902
[13] Feng W, Thiet D V, Dung D D, Shin Y and Cho S 2010 J. Appl. Phys. 108 113903
[14] Tanaka M, Harbison J P, DeBoeck J, Sands T, Philips B, Cheeks T L and Keramidas V G 1993 Appl. Phys. Lett. 62 1565
[15] Kurt H, Rode K, Venkatesan M, Stamenov P and Coey J M D 2011 Phys. Rev. B 83 040205
[16] Heikes R R 1955 Phys. Rev. 99 446
[17] Saito T and Nishimura R 2012 J. Appl. Phys. 112 083901
[18] Zhang Z D 2007 J. Mater. Sci. Technol. 23 1
[19] Tsuboya I and Sugihara M 1963 J. Phys. Soc. Jpn. 18 1096
[20] Kübler J 2006 J. Phys.: Condens. Matter 18 9795
[21] Niida H, Hori T and Nakagawa Y 1983 J. Phys. Soc. Jpn. 52 1512
[22] Yusuf S M, Manna P K, Shirolkar M M, Kulkarni S K, Tewari R and Dey G K 2013 J. Appl. Phys. 113 173906
[23] Si P Z, Brück E, Zhang Z D, Tegus O, Zhang W S, Buschow K H J and Klaasse J C P 2005 Mater. Res. Bull. 40 29
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[3] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[4] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[5] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[6] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[7] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[8] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[9] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[10] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[11] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[12] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[13] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[14] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[15] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
No Suggested Reading articles found!