SPECIAL TOPI—International Conference on Nanoscience & Technology, China 2013 |
Prev
Next
|
|
|
Magnetic field control of ferroelectric polarization and magnetization of LiCu2O2 compound |
Qi Yan (齐岩), Du An (杜安) |
College of Sciences, Northeastern University, Shenyang 110819, China |
|
|
Abstract A spin model of LiCu2O2 compound with ground state of ellipsoidal helical structure is adopted. Taking into account the interchain coupling and exchange anisotropy, we investigate the magnetoelectric properties in a rotating magnetic field and perform the Monte Carlo simulation on a two-dimensional lattice. A prominent anisotropic response is observed in both the magnetization curve and the polarization curve, qualitatively coinciding with the behaviors that are detected in the experiment. In addition, the influences of the magnetic field with various magnitudes on polarization are also explored and analyzed in detail. As the magnetic field increases, a much smoother polarization of angle dependence is exhibited, indicating the strong correlation between the magnetic and ferroelectric orders.
|
Received: 04 September 2013
Revised: 02 December 2013
Accepted manuscript online:
|
PACS:
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
75.10.-b
|
(General theory and models of magnetic ordering)
|
|
75.10.Hk
|
(Classical spin models)
|
|
75.40.Cx
|
(Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))
|
|
Fund: Project supported by the Academic Scholarship for Doctoral Candidates of China (Grant No. 10145201103), the Fundamental Research Funds for the Central Universities of China (Grant No. N110605002), and the Shenyang Applied Basic Research Foundation, China (Grant No. F12-277-1-78). |
Corresponding Authors:
Du An
E-mail: duanneu@163.com
|
Cite this article:
Qi Yan (齐岩), Du An (杜安) Magnetic field control of ferroelectric polarization and magnetization of LiCu2O2 compound 2014 Chin. Phys. B 23 087502
|
[1] |
Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123
|
[2] |
Spaldin N, Cheong R W and Ramesh R 2010 Phys. Today 63 38
|
[3] |
Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
|
[4] |
Cheong S W and Mostvoy M 2007 Nat. Mater. 6 13
|
[5] |
Yamasaki Y, Miyasaka S, Kaneko Y, He J P, Arima T and Tokura Y 2006 Phys. Rev. Lett. 96 207204
|
[6] |
Kimura T, Lashley J C and Ramirez A P 2006 Phys. Rev. B 73 220401
|
[7] |
Wang K F, Liu J M and Ren Z F 2009 Adv. Phys. 58 321
|
[8] |
Enderle M, Mukherjee C, Fäk B, Kremer R K, Broto J M, Rosner H, Drechsler S L, Richter J, Malek J, Prokofiev A, Assmus W, Pujol S, Raggazzoni J L, Rakoto H, Rheinstädter M and R?nnow H M 2005 Europhys. Lett. 70 237
|
[9] |
Drechsler S L, Volkova O, Vasiliev A N, Tristan N, Richter J, Schmitt M, Rosner H, Málek J, Klingeler R, Zvyagin A A and Büchner B 2007 Phys. Rev. Lett. 98 077202
|
[10] |
Banks M G, Heidrich-Meisner F, Honnecker A, Rakoto H, Broto J M and Kremer R K 2007 J. Phys.: Condens. Matter 19 145227
|
[11] |
Park S, Choi Y J, Zhang C L and Cheong S W 2007 Phys. Rev. Lett. 98 057601
|
[12] |
Bush A A, Glazkov V N, Hagiwara M, Kashiwagi T, Kimura S, Omura K, Prozorova L A, Svistov L E, Vasiliev A M and Zheludev A 2012 Phys. Rev. B 85 054421
|
[13] |
Drechsler S L, Málek J, Richter J, Moskvin A S, Gippius A A and Rosner H 2005 Phys. Rev. Lett. 94 039705
|
[14] |
Choi K Y, Zvyagin S A, Cao G and Lemmens P 2004 Phys. Rev. B 69 104421
|
[15] |
Hsu H C, Liu H L and Chou F C 2008 Phys. Rev. B 78 212401
|
[16] |
Masuda T, Zheludev A, Bush A, Markina M and Vasiliev A 2004 Phys. Rev. Lett. 92 177201
|
[17] |
Masuda T, Zheludev A, Roessli B, Bush A, Markina M and Vasiliev A 2005 Phys. Rev. B 72 014405
|
[18] |
Masuda T, Zheludev A, Roessli B, Bush A, Markina M and Vasiliev A 2005 Phys. Rev. Lett. 94 039706
|
[19] |
Mihály L, Dóra B, Ványolos A, Berger H and Forró L 2006 Phys. Rev. Lett. 97 067206
|
[20] |
Seki S, Yamasaki Y, Soda M, Matsuura M, Hirota K and Tokura Y 2008 Phys. Rev. Lett. 100 127201
|
[21] |
Yasui Y, Sato K, Kobayashi Y and Sato M 2009 J. Phys. Soc. Jpn. 78 084720
|
[22] |
Kobayashi Y, Sato K, Yasui Y, Moyoshi T, Sato M and Kakurai K 2009 J. Phys. Soc. Jpn. 78 084721
|
[23] |
Zhao L, Yeh K W, Rao S M, Huang T W, Wu P, Chao W H, Ke C T, Wu C E and Wu M K 2012 Europhys. Lett. 97 37004
|
[24] |
Zheng P, Luo J L, Wu D, Su S K, Liu G T, Ma Y C and Chen Z J 2008 Chin. Phys. Lett. 9 3406
|
[25] |
Dmitriev D V and Krivnov V Ya 2006 Phys. Rev. B 73 024402
|
[26] |
Sirker J 2010 Phys. Rev. B 81 014419
|
[27] |
Chen M and Hu C D 2011 Phys. Rev. B 84 094433
|
[28] |
Maurice R, Pradipto A M, de Graaf C and Broer R 2012 Phys. Rev. B 86 024411
|
[29] |
Krug von Nidda H A, Svistov L E, Eremin M V, Eremina R M, Loidl A, Kataev V, Validov A, Prokofiev A and Aßmus W 2002 Phys. Rev. B 65 134445
|
[30] |
Huang S W, Huang D J, Okamoto J, Mou C Y, Wu W B, Yeh K W, Chen C L, Wu M K, Hsu H C, Chou F C and Chen C T 2008 Phys. Rev. Lett. 101 077205
|
[31] |
Qi Y and Du A 2014 Phys. Lett. A 378 1417
|
[32] |
Yao X 2011 Europhys. Lett. 94 67003
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|