CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improved crystal quality of GaN film with the in-plane lattice-matched In0.17Al0.83N interlayer grown on sapphire substrate using pulsed metal–organic chemical vapor deposition |
Li Liang (李亮), Yang Lin-An (杨林安), Xue Jun-Shuai (薛军帅), Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Hao Yue (郝跃) |
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract We report on an improvement in the crystal quality of GaN film with an In0.17Al0.83N interlayer grown by pulsed metal-organic chemical vapor deposition, which is in-plane lattice-matched to GaN films. The indium composition of about 17% and the reductions of both screw and edge threading dislocations (TDs) in GaN film with the InAlN interlayer are estimated by high resolution X-ray diffraction. Transmission electron microscopy (TEM) measurements are employed to understand the mechanism of reduction in TD density. Raman and photoluminescence measurements indicate that the InAlN interlayer can improve the crystal quality of GaN film, and verify that there is no additional residual stress induced into the GaN film with InAlN interlayer. Atomic force microscopy measurement shows that the InAlN interlayer brings in a smooth surface morphology of GaN film. All the results show that the insertion of the InAlN interlayer is a convenient method to achieve excellent crystal quality in GaN epitaxy.
|
Received: 11 September 2013
Revised: 03 November 2013
Accepted manuscript online:
|
PACS:
|
71.55.Eq
|
(III-V semiconductors)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
78.30.Fs
|
(III-V and II-VI semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076079, 61274092, and 61204006) and the Key Program of the National Natural Science Foundation of China (Grant No. 61334002). |
Corresponding Authors:
Yang Lin-An
E-mail: layang@xidian.edu.cn
|
Cite this article:
Li Liang (李亮), Yang Lin-An (杨林安), Xue Jun-Shuai (薛军帅), Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Hao Yue (郝跃) Improved crystal quality of GaN film with the in-plane lattice-matched In0.17Al0.83N interlayer grown on sapphire substrate using pulsed metal–organic chemical vapor deposition 2014 Chin. Phys. B 23 067103
|
[1] |
Macpherson R F, Dunn G M and Pilgrim N J 2008 Semicond. Sci. Technol. 23 055005
|
[2] |
Macpherson R F and Dunn G M 2008 Appl. Phys. Lett. 93 062103
|
[3] |
Hacke P, Kuramata A, Domen K, Horino K and Tanahashi T 1999 Phys. Status Solidi 216 639
|
[4] |
Iwaya M, Terao S, Sano T, Takanami S, Ukai T, Nakamura R, Kamiyama S, Amano H and Akasaki I 2001 Phys. Status Solidi A 188 117
|
[5] |
Hansen P J, Strausser Y E, Erickson A N, Tarsa E J, Kozodoy P, Brazel E G, Ibbetson J P, Mishra U, Narayanamurti V, DenBaars S P and Speck J S 1998 Appl. Phys. Lett. 72 2247
|
[6] |
Osinsky A, Gangopadhyay S, Gaska R, Williams B, Khan M A, Kuksenkov D and Temkin H 1997 Appl. Phys. Lett. 71 2334
|
[7] |
Tikhonov A V, Malin T V, Zhuravlev K S, Dobos L and Pecz B 2012 J. Cryst. Growth 338 30
|
[8] |
Sanchez A M, Pacheco F J, Molina S I, Stemmer J, Aderhold J and Graul J 2001 J. Electron. Mater. 30 5
|
[9] |
Chakraborty A, Kim K C, Wu F, Speck J S, DenBaars S P and Mishra U K 2006 Appl. Phys. Lett. 89 041903
|
[10] |
Imer B, Wu F, Speck J S and DenBaars S P 2007 J. Cryst. Growth 306 330
|
[11] |
Miao Z L, Yu T J, Xu F J, Song J, Lu L, Huang C C, Yang Z J, Wang X Q, Zhang G Y, Zhang X P, Yu D P and Shen B 2010 J. Appl. Phys. 107 043515
|
[12] |
Lorenz K, Franco N, Alves E, Pereira S, Watson I M, Martin R W and O'Donnell K P 2008 J. Cryst. Growth 310 4058
|
[13] |
Gadanecz A, Bläsing J, Dadgar A, Hums C and Krost A 2007 Appl. Phys. Lett. 90 221906
|
[14] |
Zhang J F, Wang P Y, Xue J S, Zhou Y B, Zhang J C and Hao Y 2011 Acta Phys. Sin. 60 117305 (in Chinese)
|
[15] |
Wang P Y, Zhang J F, Xue J S, Zhou Y B, Zhang J C and Hao Y 2011 Acta Phys. Sin. 60 117304 (in Chinese)
|
[16] |
Xue J S, Hao Y, Zhou X W, Zhang J C, Yang C K, Ou X X, Yu L S, Wang H, Yang L A and Zhang J F 2011 J. Cryst. Growth 314 359
|
[17] |
Xue J S, Hao Y, Zhang J C, Zhou X W, Liu Z Y, Ma J C and Lin Z Y 2011 Appl. Phys. Lett. 98 113504
|
[18] |
Xue J S, Zhang J C, Hou Y W, Zhou H, Zhang J F and Hao Y 2012 Appl. Phys. Lett. 100 013507
|
[19] |
Xue J S, Zhang J C, Zhang W, Li L, Meng F N, Lu M, Ning J and Hao Y 2012 J. Cryst. Growth 343 110
|
[20] |
Oh T S, Jeong H, Seo T H, Lee Y S, Park A H, Kim H, Lee K J and Suh E K 2010 Jpn. J. Appl. Phys. 49 111001
|
[21] |
Miyoshi M, Egawa T and Ishikawa H 2005 J. Vac. Sci. Technol. A 23 1527
|
[22] |
Angerer H, Brunner D, Freudenberg F, Ambacher O and Stutzmann M 1997 Appl. Phys. Lett. 71 1504
|
[23] |
Moram M A and Vickers M E, 2009 Rep. Prog. Phys. 72 036502
|
[24] |
Ren Z, Sun Q, Kwon S Y, Han J, Davitt K, Song Y K, Nurmikko A V, Cho H K, Liu W, Smart J A and Schowalter L J 2007 Appl. Phys. Lett. 91 051116
|
[25] |
Sang L W, Qin Z X, Fang H, Zhou X R, Yang Z J, Shen B and Zhang G Y 2008 Appl. Phys. Lett. 92 192112
|
[26] |
Ponce F A, Cherns D, Young W T and Steeds J W 1996 Appl. Phys. Lett. 69 770
|
[27] |
Vilalta-Clemente A, Poisson M A, Behmenburg H, Giesen C, Heuken M and Ruterana P 2010 Phys. Status Solidi A 207 1105
|
[28] |
Amano H, Iwaya M, Hayashi N, Kashima T, Katsuragawa M, Takeuchi T, Wetzel C and Akasaki I 1999 MRS Internet J. Nitride Semicond. Res. 4S1 G10.1.
|
[29] |
Amano H, Iwaya M, Kashima T, Katsuragawa M, Akasaki I, Han J, Hearne S, Floro J A, Chason E and Figiel J 1998 Jpn. J. Appl. Phys. 37 L1540
|
[30] |
Bourret-Courchesne E D, Kellermann S, Yu K M, Benamara M, Liliental-Weber Z, Washburn J, Irvine S J C and Stafford A 2000 Appl. Phys. Lett. 77 3562
|
[31] |
Bourret-Courchesne E D, Yu K M, Benamara M, Liliental-Weber Z and Washburn J 2001 J. Electron. Mater. 30 11
|
[32] |
Li L, Zhao D G, Jiang D S, Liu Z S, Chen P, Wu L L, Le L C, Wang H and Yang H 2013 Chin. Phys. Lett. 30 028801
|
[33] |
Kisielowski C, Krüger J, Ruvimov S, Suski T, Ager J W III, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D and Davis R F 1996 Phys. Rev. B 54 17745
|
[34] |
Davydov V Yu, Emtsev V V, Goncharuk I N, Smirnov A N, Petrikov V D, Mamutin V V, Vekshin V A, Ivanov S V, Smirnov M B and Inushima T 1999 Appl. Phys. Lett. 75 3297
|
[35] |
Yoshikawa M, Sugie R, Murakami M, Matsunobe T, Matsuda K and Ishida H 2006 Appl. Phys. Lett. 88 161905
|
[36] |
You J H and Johnson H T 1998 Phys. Rev. B 76 115336
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|