Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 067103    DOI: 10.1088/1674-1056/23/6/067103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improved crystal quality of GaN film with the in-plane lattice-matched In0.17Al0.83N interlayer grown on sapphire substrate using pulsed metal–organic chemical vapor deposition

Li Liang (李亮), Yang Lin-An (杨林安), Xue Jun-Shuai (薛军帅), Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Hao Yue (郝跃)
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  We report on an improvement in the crystal quality of GaN film with an In0.17Al0.83N interlayer grown by pulsed metal-organic chemical vapor deposition, which is in-plane lattice-matched to GaN films. The indium composition of about 17% and the reductions of both screw and edge threading dislocations (TDs) in GaN film with the InAlN interlayer are estimated by high resolution X-ray diffraction. Transmission electron microscopy (TEM) measurements are employed to understand the mechanism of reduction in TD density. Raman and photoluminescence measurements indicate that the InAlN interlayer can improve the crystal quality of GaN film, and verify that there is no additional residual stress induced into the GaN film with InAlN interlayer. Atomic force microscopy measurement shows that the InAlN interlayer brings in a smooth surface morphology of GaN film. All the results show that the insertion of the InAlN interlayer is a convenient method to achieve excellent crystal quality in GaN epitaxy.
Keywords:  In0.17Al0.83N interlayer      GaN crystal quality      dislocation reduction      photoluminescence      Raman spectra  
Received:  11 September 2013      Revised:  03 November 2013      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  78.55.Cr (III-V semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076079, 61274092, and 61204006) and the Key Program of the National Natural Science Foundation of China (Grant No. 61334002).
Corresponding Authors:  Yang Lin-An     E-mail:  layang@xidian.edu.cn

Cite this article: 

Li Liang (李亮), Yang Lin-An (杨林安), Xue Jun-Shuai (薛军帅), Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Hao Yue (郝跃) Improved crystal quality of GaN film with the in-plane lattice-matched In0.17Al0.83N interlayer grown on sapphire substrate using pulsed metal–organic chemical vapor deposition 2014 Chin. Phys. B 23 067103

[1] Macpherson R F, Dunn G M and Pilgrim N J 2008 Semicond. Sci. Technol. 23 055005
[2] Macpherson R F and Dunn G M 2008 Appl. Phys. Lett. 93 062103
[3] Hacke P, Kuramata A, Domen K, Horino K and Tanahashi T 1999 Phys. Status Solidi 216 639
[4] Iwaya M, Terao S, Sano T, Takanami S, Ukai T, Nakamura R, Kamiyama S, Amano H and Akasaki I 2001 Phys. Status Solidi A 188 117
[5] Hansen P J, Strausser Y E, Erickson A N, Tarsa E J, Kozodoy P, Brazel E G, Ibbetson J P, Mishra U, Narayanamurti V, DenBaars S P and Speck J S 1998 Appl. Phys. Lett. 72 2247
[6] Osinsky A, Gangopadhyay S, Gaska R, Williams B, Khan M A, Kuksenkov D and Temkin H 1997 Appl. Phys. Lett. 71 2334
[7] Tikhonov A V, Malin T V, Zhuravlev K S, Dobos L and Pecz B 2012 J. Cryst. Growth 338 30
[8] Sanchez A M, Pacheco F J, Molina S I, Stemmer J, Aderhold J and Graul J 2001 J. Electron. Mater. 30 5
[9] Chakraborty A, Kim K C, Wu F, Speck J S, DenBaars S P and Mishra U K 2006 Appl. Phys. Lett. 89 041903
[10] Imer B, Wu F, Speck J S and DenBaars S P 2007 J. Cryst. Growth 306 330
[11] Miao Z L, Yu T J, Xu F J, Song J, Lu L, Huang C C, Yang Z J, Wang X Q, Zhang G Y, Zhang X P, Yu D P and Shen B 2010 J. Appl. Phys. 107 043515
[12] Lorenz K, Franco N, Alves E, Pereira S, Watson I M, Martin R W and O'Donnell K P 2008 J. Cryst. Growth 310 4058
[13] Gadanecz A, Bläsing J, Dadgar A, Hums C and Krost A 2007 Appl. Phys. Lett. 90 221906
[14] Zhang J F, Wang P Y, Xue J S, Zhou Y B, Zhang J C and Hao Y 2011 Acta Phys. Sin. 60 117305 (in Chinese)
[15] Wang P Y, Zhang J F, Xue J S, Zhou Y B, Zhang J C and Hao Y 2011 Acta Phys. Sin. 60 117304 (in Chinese)
[16] Xue J S, Hao Y, Zhou X W, Zhang J C, Yang C K, Ou X X, Yu L S, Wang H, Yang L A and Zhang J F 2011 J. Cryst. Growth 314 359
[17] Xue J S, Hao Y, Zhang J C, Zhou X W, Liu Z Y, Ma J C and Lin Z Y 2011 Appl. Phys. Lett. 98 113504
[18] Xue J S, Zhang J C, Hou Y W, Zhou H, Zhang J F and Hao Y 2012 Appl. Phys. Lett. 100 013507
[19] Xue J S, Zhang J C, Zhang W, Li L, Meng F N, Lu M, Ning J and Hao Y 2012 J. Cryst. Growth 343 110
[20] Oh T S, Jeong H, Seo T H, Lee Y S, Park A H, Kim H, Lee K J and Suh E K 2010 Jpn. J. Appl. Phys. 49 111001
[21] Miyoshi M, Egawa T and Ishikawa H 2005 J. Vac. Sci. Technol. A 23 1527
[22] Angerer H, Brunner D, Freudenberg F, Ambacher O and Stutzmann M 1997 Appl. Phys. Lett. 71 1504
[23] Moram M A and Vickers M E, 2009 Rep. Prog. Phys. 72 036502
[24] Ren Z, Sun Q, Kwon S Y, Han J, Davitt K, Song Y K, Nurmikko A V, Cho H K, Liu W, Smart J A and Schowalter L J 2007 Appl. Phys. Lett. 91 051116
[25] Sang L W, Qin Z X, Fang H, Zhou X R, Yang Z J, Shen B and Zhang G Y 2008 Appl. Phys. Lett. 92 192112
[26] Ponce F A, Cherns D, Young W T and Steeds J W 1996 Appl. Phys. Lett. 69 770
[27] Vilalta-Clemente A, Poisson M A, Behmenburg H, Giesen C, Heuken M and Ruterana P 2010 Phys. Status Solidi A 207 1105
[28] Amano H, Iwaya M, Hayashi N, Kashima T, Katsuragawa M, Takeuchi T, Wetzel C and Akasaki I 1999 MRS Internet J. Nitride Semicond. Res. 4S1 G10.1.
[29] Amano H, Iwaya M, Kashima T, Katsuragawa M, Akasaki I, Han J, Hearne S, Floro J A, Chason E and Figiel J 1998 Jpn. J. Appl. Phys. 37 L1540
[30] Bourret-Courchesne E D, Kellermann S, Yu K M, Benamara M, Liliental-Weber Z, Washburn J, Irvine S J C and Stafford A 2000 Appl. Phys. Lett. 77 3562
[31] Bourret-Courchesne E D, Yu K M, Benamara M, Liliental-Weber Z and Washburn J 2001 J. Electron. Mater. 30 11
[32] Li L, Zhao D G, Jiang D S, Liu Z S, Chen P, Wu L L, Le L C, Wang H and Yang H 2013 Chin. Phys. Lett. 30 028801
[33] Kisielowski C, Krüger J, Ruvimov S, Suski T, Ager J W III, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D and Davis R F 1996 Phys. Rev. B 54 17745
[34] Davydov V Yu, Emtsev V V, Goncharuk I N, Smirnov A N, Petrikov V D, Mamutin V V, Vekshin V A, Ivanov S V, Smirnov M B and Inushima T 1999 Appl. Phys. Lett. 75 3297
[35] Yoshikawa M, Sugie R, Murakami M, Matsunobe T, Matsuda K and Ishida H 2006 Appl. Phys. Lett. 88 161905
[36] You J H and Johnson H T 1998 Phys. Rev. B 76 115336
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[4] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[5] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[8] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[9] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[10] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[11] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[12] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[13] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[14] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[15] Glass formation and physical properties of Sb 2S 3-CuI chalcogenide system
Qilin Ye(叶旗林), Dan Chen(陈旦), and Changgui Lin(林常规). Chin. Phys. B, 2021, 30(1): 016302.
No Suggested Reading articles found!