Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 067102    DOI: 10.1088/1674-1056/23/6/067102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and magnetic properties of BiFeO3 with intrinsic defects:First-principles prediction

Yang Rui-Peng (杨瑞鹏)a, Lin Si-Xian (林思贤)a, Fang Xiao-Gong (方潇功)a, Qin Ming-Hui (秦明辉)a, Gao Xing-Sen (高兴森)a, Zeng Min (曾敏)a, Liu Jun-Ming (刘俊明)b
a Institute for Advanced Materials, South China Normal University, Guangzhou 510006, China;
b Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The electronic structure, magnetism, and dielectric functions of BiFeO3 with intrinsic vacancies, including Bi-, Fe-, and O-vacancies (denoted as VFe, VBi, and VO, respectively) are investigated using the first-principles density functional theory plus U calculations. It is revealed that the structural distortions associated with those vacancies impose significant influences on the total density of state and magnetic behaviors. The existence of VBi favors the excitation of the O2p state into the band gap at 0.4 eV, while the O2p and Fe3d orbitals are co-excited into the band gap around 0.45 eV in VFe. Consequently, a giant net magnetic moment of 1.96 uB is generated in VFe, and a relatively small moment of 0.13 uB is induced in VBi, whereas VO seems magnetically inactive. The giant magnetic moment generated in VFe originates from the suppression of the spatially modulated antiferromagnetic spin structure. Furthermore, VFe and VBi have strong influences on dielectric function, and induce some strong peaks to occur in the lower energy level. In contrast, VO has a small effect.
Keywords:  BiFeO3      vacancies      magnetization      dielectric functions  
Received:  31 October 2013      Revised:  03 December 2013      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.55.-i (Impurity and defect levels)  
  77.22.-d (Dielectric properties of solids and liquids)  
  75.10.-b (General theory and models of magnetic ordering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51101063, 51072061, and 51172067) and the Natural Science Foundation of Guangdong Province, China (Grant No. S2011040003205).
Corresponding Authors:  Zeng Min     E-mail:  zengmin@scnu.edu.cn

Cite this article: 

Yang Rui-Peng (杨瑞鹏), Lin Si-Xian (林思贤), Fang Xiao-Gong (方潇功), Qin Ming-Hui (秦明辉), Gao Xing-Sen (高兴森), Zeng Min (曾敏), Liu Jun-Ming (刘俊明) Electronic and magnetic properties of BiFeO3 with intrinsic defects:First-principles prediction 2014 Chin. Phys. B 23 067102

[1] Smolenskiǐ G and Chupis I 1982 Sov. Phys. Usp. 25 475
[2] Wang K F, Liu J M, and Ren Z F 2009 Adv. Phys. 58 321
[3] Wang J, Neaton J, Zheng H, Nagarajan V, Ogale S, Liu B, Viehland D, Vaithyanathan V, Schlom D and Waghmare U 2003 Science 299 1719
[4] Catalan G and Scott J F 2009 Adv. Mater. 21 2463
[5] Zhang S T, Zhang Y, Lu M H, Du C L, Chen Y F, Liu Z G, Zhu Y Y, Ming N B and PanX Q 2006 Appl. Phys. Lett. 88 162901
[6] Lisenkov S, Kornev I A and Bellaiche L 2009 Phys. Rev. B 79 012101
[7] Selbach S M, Einarsrud M A, Tybell T and Grande T 2007 J. Am. Ceram. Soc. 90 3430
[8] Hu Z Q, Li M Y, Yu Y, Liu J, Pei L, Wang J, Liu X L, Yu B F and Zhao X Z 2010 Solid State Commun. 150 1088
[9] Prosandeev S, Kornev I A and BellaicheL 2011 Phys. Rev. B 83 020102(R)
[10] Huang F, Lu X, Wang Z, Lin W, Kan Y, Bo H, Cai W and Zhu J 2009 Appl. Phys. A 97 699
[11] Fischer P, Polomska M, Sosnowska I and Szymanski M 1980 J. Phys. C: Solid State Phys. 13 1931
[12] Yuan G L, Or S W, Liu J M and Liu Z G 2006 Appl. Phys. Lett. 89 052905
[13] Gu Y H, Wang Y, Chen F, Chan H W and Chen W P 2010 J. Appl. Phys. 108 094112
[14] Ederer C and Spaldin N A 2005 Phys. Rev. B 71 224103
[15] Ju S and Cai T Y 2009 Appl. Phys. Lett. 95 231906
[16] Lou Y H, Song G L, Chang F G and Wang Z K 2010 Chin. Phys. B 19 077702
[17] Zhang Z, Wu P, Chen L and Wang J 2010 Appl. Phys. Lett. 96 232906
[18] Paudel T R, Jaswal S S and Tsymbal E Y 2012 Phys. Rev. B 85 104409
[19] Blöchl P E 1994 Phys. Rev. B 50 17953
[20] Anisimov V I, Aryasetiawan F and Lichtenstein A 1997 J. Phys.: Condens. Matter 9 767
[21] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[22] Kresse G and Furthnuller J 1996 Phys. Rev. B 54 11169
[23] Kubel F and Schmid H 1990 Acta Crystallogr. Sect. B: Struct. Sci. 46 698
[24] Zeng M, Or S W and Chan W H L 2010 J. Appl. Phys. 107 043513
[25] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
[26] Shimada T, Uratani Y and Kitamura T 2012 Appl. Phys. Lett. 100 162901
[27] Clark S and Robertson J 2007 Appl. Phys. Lett. 90 132903
[28] Kanai T, Ohkoshi S and Hashimoto K 2003 J. Phys. Chem. Solids 64 391
[29] Gao F, Yuan Y, Wang K, Chen X, Chen F, Liu J M and Ren Z 2006 Appl. Phys. Lett. 89 102506
[30] Kim T H, Jeon B C, Min T, Yang S M, Lee D, Kim Y S, Baek S H, Saenrang W, Eom C B and Song T K 2012 Adv. Funct. Mater. 22 4962
[31] Ihlefeld J, Podraza N, Liu Z, Rai R, Xu X, Heeg T, Chen Y, Li J, Collins R and Musfeldt J 2008 Appl. Phys. Lett. 92 142908
[1] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[2] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[3] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[4] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[5] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[6] Temperature-dependent structure and magnetization of YCrO3 compound
Qian Zhao(赵前), Ying-Hao Zhu(朱英浩), Si Wu(吴思), Jun-Chao Xia(夏俊超), Peng-Fei Zhou(周鹏飞), Kai-Tong Sun(孙楷橦), and Hai-Feng Li(李海峰). Chin. Phys. B, 2022, 31(4): 046101.
[7] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[8] In-plane current-induced magnetization reversal of Pd/CoZr/MgO magnetic multilayers
Jing Liu(刘婧), Caiyin You(游才印), Li Ma(马丽), Yun Li(李云), Ling Ma(马凌), and Na Tian(田娜). Chin. Phys. B, 2022, 31(12): 127502.
[9] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[10] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
[11] Multiple modes of perpendicular magnetization switching scheme in single spin—orbit torque device
Tong-Xi Liu(刘桐汐), Zhao-Hao Wang(王昭昊), Min Wang(王旻), Chao Wang(王朝), Bi Wu(吴比), Wei-Qiang Liu(刘伟强), and Wei-Sheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(10): 107501.
[12] Role of compositional changes on thermal, magnetic, and mechanical properties of Fe-P-C-based amorphous alloys
Indah Raya, Supat Chupradit, Mustafa M Kadhim, Mustafa Z Mahmoud, Abduladheem Turki Jalil, Aravindhan Surendar, Sukaina Tuama Ghafel, Yasser Fakri Mustafa, and Alexander N Bochvar. Chin. Phys. B, 2022, 31(1): 016401.
[13] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[14] Low temperature ferromagnetism in CaCu3Ti4O12
Song Yang(杨松), Xiao-Jing Luo(罗晓婧), Zhi-Ming Shen(申志明), Tian Gao(高湉), Yong-Sheng Liu(刘永生), and Shao-Long Tang(唐少龙). Chin. Phys. B, 2021, 30(9): 098103.
[15] Magnetization relaxation of uniaxial anisotropic ferromagnetic particles with linear reaction dynamics driven by DC/AC magnetic field
Yu-Song Hu(胡玉松), Min Jiang(江敏), Tao Hong(洪涛), Zheng-Ming Tang(唐正明), and Ka-Ma Huang(黄卡玛). Chin. Phys. B, 2021, 30(9): 090202.
No Suggested Reading articles found!