|
|
Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity |
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明) |
Laboratory of Nanophotonic Functional Materials and Devices (SIPSE), Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China |
|
|
Abstract We propose a scheme for generating a hyperentangled four-photon cluster state that is simultaneously entangled in polarization modes and spatial modes. This scheme is based on linear optical elements, weak cross-Kerr nonlinearity, and homodyne detection. Therefore, it is feasible with current experimental technology.
|
Received: 20 July 2013
Revised: 05 November 2013
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.67.-a
|
(Quantum information)
|
|
42.50.-p
|
(Quantum optics)
|
|
Fund: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 60978009 and 61378012), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the "973" Project (Grant Nos. 2011CBA00200 and 2013CB921804), and the PCSIRT (Grant No. IRT1243). |
Corresponding Authors:
Zhang Zhi-Ming
E-mail: zmzhang@scnu.edu.cn
|
Cite this article:
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明) Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity 2014 Chin. Phys. B 23 060306
|
[1] |
Jeong H and Kim M S 2002 Phys. Rev. A 65 042305
|
[2] |
Ralph T C, Gilchrist A and Milburn G J 2003 Phys. Rev. A 68 042319
|
[3] |
Van Enk S J and Hirota O 2001 Phys. Rev. A 64 022313
|
[4] |
Jeong H, Kim M S and Lee J 2001 Phys. Rev. A 64 052308
|
[5] |
Gottesman D and Preskill J 2001 Phys. Rev. A 63 022309
|
[6] |
Cerf N J 2001 Phys. Rev. A 63 052311
|
[7] |
Dur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
|
[8] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[9] |
Chen L B 2002 Chin. Phys. 11 999
|
[10] |
Long G. L and Liu X. S 2002 Phys. Rev. A 65 032302
|
[11] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
|
[12] |
Barreiro J T, Langford N K, Peters N A and Kwiat P G 2005 Phys. Rev. Lett. 95 260501
|
[13] |
Barbieri M, Cinelli C, Mataloni P and Martini F D 2005 Phys. Rev. A 72 052110
|
[14] |
Walborn S P, Souto Ribeiro P H, Davidovich L, Mintert F and Buchleitner A 2006 Nature 440 1022
|
[15] |
Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
|
[16] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[17] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[18] |
Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
|
[19] |
Wang T J, Lu Y and Long G L 2012 Phys. Rev. A 86 042337
|
[20] |
Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302
|
[21] |
Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
|
[22] |
Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
|
[23] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
|
[24] |
Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
|
[25] |
Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
|
[26] |
Zhang Z M, Khosa A H, Ikram M and Zubairy M S 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1917
|
[27] |
Zhang Z M, Yang J and Yu Y F 2008 J. Phys. B: At. Mol. Opt. Phys. 41 025502
|
[28] |
Yang J, Ren M, Yu Y F, Zhang Z M and Liu S H 2008 Acta Phys. Sin. 57 887 (in Chinese)
|
[29] |
Lai B H, Du G, Yu Y F, Zhang Z M and Liu S H 2010 Acta Phys. Sin. 59 1017 (in Chinese)
|
[30] |
Zhao L F, Lai B H, Mei F, Yu Y F, Feng X L and Zhang Z M 2010 Chin. Phys. B 19 094207
|
[31] |
Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys. 4 282
|
[32] |
Dur W and Briegel H J 2004 Phys. Rev. Lett. 92 180403
|
[33] |
Ye L, Yu L B and Guo G C 2005 Phys. Rev. A 72 034304
|
[34] |
Zou X B and Mathis W 2005 Phys. Rev. A 72 013809
|
[35] |
Dong P, Xue Z Y, Yang M and Cao Z L 2006 Phys. Rev. A 73 033818
|
[36] |
Zhao C R and Ye L 2011 Sci. China: Phys. Mech. Astron. 54 479
|
[37] |
Su S L, Wang Y, Guo Q, Wang H F and Zhang S 2012 Chin. Phys. B 21 044205
|
[38] |
Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
|
[39] |
Yurke B 1985 Phys. Rev. A 32 311
|
[40] |
Shapiro J H 2006 Phys. Rev. A 73 062305
|
[41] |
Banacloche J G 2010 Phys. Rev. A 81 043823
|
[42] |
Hofmann H F, Kojima K, Takeuchi S and Sasaki K 2003 J. Opt. B 5 281
|
[43] |
Feizpour A, Xing X X and Steinberg A M 2011 Phys. Rev. Lett. 107 133603
|
[44] |
Hoi I C, Kockum A F, Palomaki T, Stace T M, Fan B, Tornberg L, Sathyamoorthy S R, Johansson G, Delsing P andWilson C M 2013 Phys. Rev. Lett. 111 053601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|