Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 048201    DOI: 10.1088/1674-1056/23/4/048201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Aggregation of fullerene (C60) nanoparticle:A molecular-dynamic study

He Su-Zhen (何素贞)a, Merlitz Holgerb c, Wu Chen-Xu (吴晨旭)b
a Department of Electronic Engineering, Putian University, Putian 351100, China;
b Department of Physics and ITPA, Xiamen University, Xiamen 361005, China;
c Leibniz-Institut für Polymerforschung Dresden 01069 Dresden, Germany
Abstract  We present the results of molecular dynamics simulations of net positively charged fullerene nanoparticles in salt-free and salt-added solution. The aggregation of fullerene (C60)-like nanoparticle and counterion are studied in detail as a function of temperatures and a finite salt concentration. Our simulations show that the strong conformation changes as temperature changes. The net positively-charged nanoparticles do not repel each other but are condensed under proper temperatures. If salts are added, the aggregated nanoparticles will be disaggregated due to the Debye screening effect.
Keywords:  nanoparticle      molecular dynamics simulation      aggregation      counterion release  
Received:  07 September 2013      Revised:  03 December 2013      Accepted manuscript online: 
PACS:  82.45.Gj (Electrolytes)  
  82.37.Np (Single molecule reaction kinetics, dissociation, etc.)  
Fund: Project supported by the Natural Science Foundation of Fujian Province of China (Grant No. 2012J05008).
Corresponding Authors:  Wu Chen-Xu     E-mail:  cxwu@xmu.edu.cn
About author:  82.45.Gj; 82.37.Np

Cite this article: 

He Su-Zhen (何素贞), Merlitz Holger, Wu Chen-Xu (吴晨旭) Aggregation of fullerene (C60) nanoparticle:A molecular-dynamic study 2014 Chin. Phys. B 23 048201

[1] Chen K L and Elimelech M 2006 Langmuir 22 10994
[2] Rudalevige T, Francis A H and Zand R 1998 J. Phys. Chem. 102 9797
[3] Nath S, Pal H, Palit D K, Sapre A V and Mittal J P 1998 J. Phys. Chem. 102 10158
[4] Brant J A, Labille J, Bottero J Y and Wiesner M R 2006 Langmuir 22 3878
[5] Halford B 2006 Chem. Eng. News 84 47
[6] Fortner J D, Lyon D Y, Sayes C M, Boyd A M, Falkner J C, Hotze E M, Alemany L B, Tao Y J, Guo W, Ausman K D, Colvin V L and Hughes J B 2005 Environ. Sci. Technol. 39 4307
[7] Sayes C M, Gobin A M, Ausman K D, Mendez J, West J L and Colvin V L 2004 Nano Lett. 4 1881
[8] Lyon D Y, Adams L K, Falkner J C and Alvarez P J 2006 J. Environ. Sci. Technol 40 4360
[9] Jonathan B, Hélène L and Mark R W 2005 Journal of Nanoparticle Research 7 545
[10] Plimpton S J 1995 Comput. Phys. 117 1
[11] Pollock E L and Glosli J 1996 Comput. Phys. Commun. 95 93
[12] Tong C H and Zhu Y J 2010 Chin. Phys. B 19 048702
[13] Chen L, Merlitz H, Wu C X and Sommer J U 2011 Macromolecules 44 3109
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[7] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[10] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[11] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[12] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[13] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[14] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[15] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
No Suggested Reading articles found!