INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations |
Jian-Gang Wang(王建港)1,2, Xiao-Xuan Shi(史晓璇)1,2, Yu-Ru Liu(刘玉如)2, Peng-Ye Wang(王鹏业)2, Hong Chen(陈洪)1,†, and Ping Xie(谢平)2,‡ |
1 School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; 2 Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Kinesin is a molecular motor that can step processively on microtubules via the hydrolysis of ATP molecules. An important factor characterizing the processivity of the kinesin motor is its dissociation from the microtubule. Here, using all-atom molecular dynamics simulations, we studied the dissociation process of the kinesin head in weak-microtubule-binding or ADP state from tubulin on the basis of the available high-resolution structural data for the head and tubulin. By analyzing the simulated snapshots of the structure of the head-tubulin complex we provided detailed structural and dynamic information for the dissociation process. We found that the dissociation of the head along different directions relative to the tubulin exhibits very different dynamic behaviors. Moreover, the potential forms or energy landscapes of the interaction between the head and tubulin along different directions were determined. The studies have important implications for the detailed molecular mechanism of the dissociation of the kinesin motor and thus are critical to the mechanism of its processivity.
|
Received: 07 January 2022
Revised: 20 February 2022
Accepted manuscript online:
|
PACS:
|
87.16.Nn
|
(Motor proteins (myosin, kinesin dynein))
|
|
87.15.rs
|
(Dissociation)
|
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
Corresponding Authors:
Hong Chen,E-mail:hchen2017@163.com;Ping Xie,E-mail:pxie@aphy.iphy.ac.cn
E-mail: hchen2017@163.com;pxie@aphy.iphy.ac.cn
|
About author: 2022-3-2 |
Cite this article:
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平) Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations 2022 Chin. Phys. B 31 058702
|
[1] Vale R D, Reese T S and Sheetz M P 1985 Cell 42 39 [2] Howard J 1996 Annu. Rev. Physiol. 58 703 [3] Hirokawa N 1998 Science 279 519 [4] Hirokawa N, Noda Y, Tanaka Y and Niwa S 2009 Nat. Rev. Mol. Cell. Biol. 10 682 [5] Xie P 2010 Int. J. Biol. Sci. 6 665 [6] Li M, Ouyang Z C and Shu Y G 2016 Acta Phys. Sin. 65 188702 (in Chinese) [7] Qin J, Zhang H, Geng Y and Ji Q 2020 Int. J. Mol. Sci. 21 6977 [8] Geng Y Z, Zhang H, Ji Q and Yan S W 2014 Chin. Phys. Lett. 31 048702 [9] Xie P, Dou S X and Wang P Y 2005 Chin. Phys. B 14 744 [10] Crevel I M T C, Lockhart A and Cross R A 1996 J. Mol. Biol. 257 66 [11] Hancock W O and Howard J 1999 Proc. Natl. Acad. Sci. USA 96 13147 [12] Sosa H, Peterman E J G, Moerner W E and Goldstein L S B 2001 Nat. Struct. Mol. Biol. 8 540 [13] Gigant B, Wang W, Dreier B, Jiang Q, Pecqueur L, Plückthun A, Wang C and Knossow M 2013 Nat. Struct. Mol. Biol. 20 1001 [14] Cao L, Wang W, Jiang Q, Wang C, Knossow M and Gigant B 2014 Nat. Commun. 5 5364 [15] Kikkawa M and Hirokawa N 2006 EMBO J. 25 4187 [16] Hirose K, Akimaru E, Akiba T, Endow S A and Amos L A 2006 Mol. Cell 23 913 [17] Sindelar C V and Downing K H 2010 Proc. Natl. Acad. Sci. USA 107 4111 [18] Goulet A, Behnke-Parks W M, Sindelar C V, Major J, Rosenfeld S S and Moores C A 2012 J. Biol. Chem. 287 44654 [19] Goulet A, Major J, Jun Y, Gross S P, Rosenfeld S S and Moores C A 2014 Proc. Natl. Acad. Sci. USA 111 1837 [20] Morikawa M, Yajima H, Nitta R, Inoue S, Ogura T, Sato C and Hirokawa N 2015 EMBO J. 34 1270 [21] Li M and Zheng W 2012 Biochemistry 51 5022 [22] Chakraborty S and Zheng W 2015 Biochemistry 54 859 [23] Ma Y, Li T, Jin Y, Geng Y and Ji Q 2019 Cell. Mol. Bioeng. 12 345 [24] Shi X X, Fu Y B, Guo S K, Wang P Y, Chen H and Xie P 2018 Proteins 86 1127 [25] Shi X X, Wang P Y, Chen H and Xie P 2021 Int. J. Mol. Sci. 22 6709 [26] Coppin C M, Pierce D W, Hsu L and Vale R D 1997 Proc. Natl. Acad. Sci. USA 94 8539 [27] Kunwar A, Tripathy S K, Xu J, Mattson M K, Anand P, Sigua R, Vershinin M, McKenney R J, Yu C C, Mogilner A and Gross S P 2011 Proc. Natl. Acad. Sci. USA 108 18960 [28] Andreasson J O L, Milic B, Chen G Y, Guydosh N R, Hancock W O and Block S M 2015 eLife 4 e07403 [29] Yildiz A, Tomishige M, Gennerich A and Vale R D 2008 Cell 134 1030 [30] Schnitzer M J, Visscher K and Block S M 2000 Nature Cell Biol. 2 718 [31] Milic B, Andreasson J O L, Hancock W O and Block S M 2014 Proc. Natl. Acad. Sci. USA 111 14136 [32] Clancy B E, Behnke-Parks W M, Andreasson J O L, Rosenfeld S S and Block S M 2011 Nat. Struct. Mol. Biol. 18 1020 [33] Fisher M E and Kolomeisky A B 2001 Proc. Natl. Acad. Sci. USA 98 7748 [34] Vu H T, Chakrabarti S, Hinczewski M and Thirumalai D 2016 Phys. Rev. Lett. 117 078101 [35] Khataee H and Howard J 2019 Phys. Rev. Lett. 122 188101 [36] Liepelt S and Lipowsky R 2007 Phys. Rev. Lett. 98 258102 [37] Sasaki K, Kaya M and Higuchi H 2018 Biophys. J. 115 1981 [38] Sumi T 2017 Sci. Rep. 7 1163 [39] Guo S K, Shi X X, Wang P Y and Xie P 2018 FEBS Open Bio. 8 1332 [40] Guo S K, Shi X X, Wang P Y and Xie P 2019 Biophys. Chem. 253 106216 [41] Xie P 2020 ACS. Omega 5 5721 [42] Xie P 2021 Commun. Theor. Phys. 73 057601 [43] Xie P 2021 J. Theor. Biol. 530 110879 [44] Uemura S, Kawaguchi K, Yajima J, Edamatsu M, Toyoshima Y Y and Ishiwata S I 2002 Proc. Natl. Acad. Sci. USA 99 5977 [45] Kull F J, Sablin E P, Lau R, Fletterick R J and Vale R D 1996 Nature 380 550 [46] Lowe J, Li H, Downing K H and Nogales E 2001 J. Mol. Biol. 313 1045 [47] Guex N and Peitsch M C 1997 Electrophoresis 18 2714 [48] Shi X X, Guo S K, Wang P Y, Chen H and Xie P 2020 Proteins 88 545 [49] Pettersen E F, Goddard T D, Huang C C, Couch G S, Greenblatt D M, Meng E C and Ferrin T E 2004 J. Comput. Chem. 25 1605 [50] Zimmerman K 1991 J. Comp. Chem. 12 310 [51] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101 [52] Berendsen H J C, Postma J P M, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684 [53] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182 [54] Wang Z, Zhang Z, Fu Y, Wang P and Xie P 2017 Chin. Phys. B 26 030201 [55] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem.Theory. Comput. 4 435 [56] Hornak V, Abel R, Okur A, Strockbine B, Roitberg A and Simmerling C 2006 Proteins 65 712 [57] Price D J and Brooks C L 3rd 2004 J. Chem. Phys. 121 10096 [58] Hockney R W, Goel S P and Eastwood J W 1974 J. Comp. Phys. 14 148 [59] Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 J. Comput. Chem. 18 1463 [60] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577 [61] Howard J, Hudspeth A J and Vale R D 1989 Nature 342 154 [62] Block S M, Goldstein L S and Schnapp B J 1990 Nature 348 348 [63] Guo S K, Wang P Y and Xie P 2017 J. Theor. Biol. 414 62 [64] Xie P 2021 Sci. Rep. 11 8081 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|