Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046805    DOI: 10.1088/1674-1056/23/4/046805
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Two crucial factors influencing quality of GaAs on Ge substrate

Deng Chuang (邓闯)a b, Men Chuan-Ling (门传玲)a, Chen Da (陈达)b
a School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
b State Key Laboratory of Functional Materials for Informatics, Institute of Microsystem and Information Technology,Chinese Academy of Sciences, Shanghai 200050, China
Abstract  High-quality GaAs films with fine surfaces and GaAs/Ge interfaces on Ge have been achieved via molecular beam epitaxy. The influence of low temperature annealing and low temperature epitaxy on the quality of the film when GaAs is grown on a (100) 6° offcut towards [111] Ge substrate are investigated by analyzing and comparing the GaAs films that are fabricated via three different processes. A low temperature annealing process after high temperature annealing and a low temperature epitaxy process after the initial GaAs growth play a vital role in improving the quality of GaAs film on a Ge substrate.
Keywords:  molecular beam epitaxy      low temperature annealing      low temperature epitaxy  
Received:  07 August 2013      Revised:  04 October 2013      Accepted manuscript online: 
PACS:  68.35.Fx (Diffusion; interface formation)  
  68.35.Ja (Surface and interface dynamics and vibrations)  
  68.35.Md (Surface thermodynamics, surface energies)  
Fund: Project supported by the Shanghai Municipal Natural Science Foundation, China (Grant No. 13ZR1428200).
Corresponding Authors:  Men Chuan-Ling     E-mail:  anziloveling@126.com
About author:  68.35.Fx; 68.35.Ja; 68.35.Md

Cite this article: 

Deng Chuang (邓闯), Men Chuan-Ling (门传玲), Chen Da (陈达) Two crucial factors influencing quality of GaAs on Ge substrate 2014 Chin. Phys. B 23 046805

[1] Behet M, H6vel R, Kohl A, Mesquida A, Kfisters, Opitz B and Heime K 1996 Microelectr. J. 27 297
[2] Brammertz G, Mols Y, Degroote S, Motsnyi V, Leys M, Borghs G and Caymax M 2006 J. Cryst. Growth 99 093514
[3] Brammertz G, Mols Y, Degroote S, Leys M, Van Steenbergen J, Borghs G and Caymax M 2006 J. Cryst. Growth 297 204
[4] Zhou D, Lan Q, Kong Y, Miao Z, Feng S and Niu Z 2003 Chin. Phys. 12 218
[5] Choi D, Harris J S, Kim E, McIntyre P C, Cagnon J and Stemmer S 2009 J. Cryst. Growth 311 1962
[6] Hudait M K, Zhu Y, Jain N, Vijayaraghavan S, Saha A, Merritt T and Khodaparast G A 2012 J. Vac. Sci. Technol. B 30 051205
[7] Chand N, Klem J and Morkoç H 1986 Appl. Phys. Lett. 48 484
[8] Mitin V F, Kholevchuk V V and Kolodych B P 2011 Cryogenics 51 68
[9] Pillarisetty R 2010 International Electron Devices Meeting, August 6, 2010, San Francisco, CA, USA, p. 150
[10] Gao H, Zeng Y, Wang B, Zhu Z and Wang Z 2008 Chin. Phys. B 17 1119
[11] Guo J W, Huang H, Ren X M, Yan X, Cai S W, Guo X, Huang Y Q, Wang Q, Zhang X and Wang W 2011 Chin. Phys. Lett. 28 036101
[12] Guter W, Schöne J, Philipps S P, Steiner M, Siefer G, Wekkeli A, Welser E, Oliva E, Bett A W and Dimroth F 2009 Appl. Phys. Lett. 94 223504
[13] Wright S L 1982 J. Vac. Sci. Technol. 21 534
[14] Liu H, Wang T and Jiang Q 2011 Nat. Photonics 5 416
[15] Chia C K, Dong J R, Chi D Z, Sridhara A, Wong A S W, Suryana M, Dalapati G K, Chua S J and Lee S J 2008 Appl. Phys. Lett. 92 141905
[16] Knuuttila L, Lankinen A, Likonen J, Lipsanen H, Lu X, McNally P, Riikonen J and Tuomi T 2005 Jpn. J. Appl. Phys. 44 7777
[17] Tanoto H, Yoon S F, Loke W K, Fitzgerald E A, Dohrman C, Narayanan B, Doan M T and Tung C H 2006 J. Vac. Sci. Technol. B 24 152
[18] Chen K P, Yoon S F, Ng T K, Tanoto H, Lew K L, Dohrman C L and Fitzgerald E A 2009 J. Phys. D: Appl. Phys. 42 035303
[19] Bordel D, Guimard D, Rajesh M, Nishioka M, Augendre E, Clavelier L and Arakawa Y 2010 Appl. Phys. Lett. 96 043101
[20] Choi D, Kim E, McIntyre P C and Harris J S 2008 Appl. Phys. Lett. 92 203502
[21] Springholz G, Frank N, Bauer Ghttp://ipn2.epfl.ch/lns/lectures/nanoscience/lecturenotes/Nanoscience-I-SCnanostructures.pdf 2008
[22] He J F, Niu Z C, Chang X Y, Ni H Q, Zhu Y, Li M F and Shang X J 2011 Chin. Phys. B 20 018102
[23] Strite S, Biswas D, Kumar N S, Fradkin M and Morkoç H 1990 Appl. Phys. Lett. 56 244
[24] Cui X and Zhang C 2008 Acta Phys. Sin. 58 309 (in Chinese)
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[4] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[5] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[6] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[7] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[8] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[9] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[10] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[11] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[12] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[13] Growth of high-crystallinity uniform GaAs nanowire arrays by molecular beam epitaxy
Yu-Bin Kang(亢玉彬), Feng-Yuan Lin(林逢源), Ke-Xue Li(李科学), Ji-Long Tang(唐吉龙), Xiao-Bing Hou(侯效兵), Deng-Kui Wang(王登魁), Xuan Fang(方铉), Dan Fang(房丹), Xin-Wei Wang(王新伟), and Zhi-Peng Wei(魏志鹏). Chin. Phys. B, 2021, 30(7): 078102.
[14] Vertical MBE growth of Si fins on sub-10 nm patterned substrate for high-performance FinFET technology
Shuang Sun(孙爽), Jian-Huan Wang(王建桓), Bao-Tong Zhang(张宝通), Xiao-Kang Li(李小康), Qi-Feng Cai(蔡其峰), Xia An(安霞), Xiao-Yan Xu(许晓燕), Jian-Jun Zhang(张建军), and Ming Li(黎明). Chin. Phys. B, 2021, 30(7): 078104.
[15] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
No Suggested Reading articles found!