INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Coupling interaction between a single emitter and the propagating surface plasmon polaritons in a graphene microribbon waveguide |
Zhang Lei (张磊)a, Fu Xiu-Li (符秀丽)a, Lei Ming (雷鸣)a, Chen Jian-Jun (陈建军)a, Yang Jun-Zhong (杨俊忠)a, Peng Zhi-Jian (彭志坚)b, Tang Wei-Hua (唐为华)a |
a School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; b School of Engineering and Technology, China University of Geosciences, Beijing 100083, China |
|
|
Abstract The coupling interaction between an individual optical emitter and the propagating surface plasmon polaritons in a graphene microribbon (GMR) waveguide is investigated by numerical calculations, where the emitter is situated above the GMR or in the same plane of the GMR. The results reveal a multimode coupling mechanism for the strong interaction between the emitter and the propagating plasmonic waves in graphene. When the emitter is situated in the same plane of the GMR, the decay rate from the emitter to the surface plasmon polaritons increases more than 10 times compared with that in the case with the emitter above the GMR.
|
Received: 07 June 2013
Revised: 06 August 2013
Accepted manuscript online:
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
42.25.Dd
|
(Wave propagation in random media)
|
|
52.40.Db
|
(Electromagnetic (nonlaser) radiation interactions with plasma)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51172030, 11274052, 51102019, 51172208, and 61274015) and the National Basic Research Program of China (Grant No. 2010CB923200). |
Corresponding Authors:
Fu Xiu-Li, Tang Wei-Hua
E-mail: xiulifu@bupt.edu.cn;whtang@bupt.edu.cn
|
Cite this article:
Zhang Lei (张磊), Fu Xiu-Li (符秀丽), Lei Ming (雷鸣), Chen Jian-Jun (陈建军), Yang Jun-Zhong (杨俊忠), Peng Zhi-Jian (彭志坚), Tang Wei-Hua (唐为华) Coupling interaction between a single emitter and the propagating surface plasmon polaritons in a graphene microribbon waveguide 2014 Chin. Phys. B 23 038101
|
[1] |
Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
|
[2] |
Wu X F, Zhang J S, Li Z, Liu Y L and Gong Q H 2009 Chin. Phys. Lett. 26 057302
|
[3] |
Zhong R B, Liu W H, Zhou J and Liu S G 2012 Chin. Phys. B 21 117303
|
[4] |
Chen J J, Li Z, Zhang J S and Gong Q H 2008 Acta Phys. Sin. 57 5893 (in Chinese)
|
[5] |
Zhang H F, Cao D, Tao F, Yang X H, Wang Y, Yan X N and Bai L H 2010 Chin. Phys. Lett. 19 027301
|
[6] |
Fang Z Y, Thongrattanasiri S, Schlather A, Liu Z, Ma L L, Wang Y M, Ajayan P M, Nordlander P, Halas N J and de Abajo F J G 2013 ACS Nano 7 2388
|
[7] |
Zhao J Q, Wang YG, Yan P G, Ruan S C, Cheng J Q, Du G G, Yu Y Q, Zhang G L, Wei H F, Luo J and Tsang Y H 2012 Chin. Phys. Lett. 29 114206
|
[8] |
Koppens F H L, Chang D E and de Abajo F J G 2011 Nano Lett. 11 3370
|
[9] |
Jablan M, Bujan H and Soljacic M 2009 Phys. Rev. B 80 245435
|
[10] |
Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L and Basov D H 2008 Nat. Phys. 4 532
|
[11] |
Efetove D K and Kim P 2010 Phys. Rev. Lett. 105 256805
|
[12] |
Xia F N, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839
|
[13] |
Fang Z Y, Wang Y M, Liu Z, Schlather A, Ajayan P M, Koppens F H L, Nordlander P and Halas N J 2012 ACS Nano 6 10222
|
[14] |
Xu Y H, Jia Y L, Zhou J and Dong J M 2010 Chin. Phys. Lett. 27 057303
|
[15] |
Yang J M, Yang Q, Liu J, Wang Y G and Yuen H T 2013 Chin. Phys. B 22 094210
|
[16] |
Schedin F, Lidorikis E, Lombardo A, Kravets V G, Geim A K, Grigorenko A N, Novoselov K S and Ferrari A C 2010 ACS Nano 4 5617
|
[17] |
Fang Z Y, Liu Z, Wang Y M, Ajayan P M, Nordlander P and Halas N J 2012 Nano Lett. 12 3808
|
[18] |
Nikitin Y, Guinea F, Garcia-Vidal F J and Martin-Moreno L 2011 Phys. Rev. B 84 161407
|
[19] |
Ekert K 1991 Phys. Rev. Lett. 67 661
|
[20] |
Briegel H J, Dur W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
|
[21] |
Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L and García de Abajo F J 2012 ACS Nano 6 431
|
[22] |
Wunsch B, Stauber T, Sols F and Guinea F 2006 New J. Phys. 8 318
|
[23] |
Hwang E H and Sarma S D 2007 Phys. Rev. B 75 205418
|
[24] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[25] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[26] |
Chen J N, Badioli M, Alonso-Gonzalez P, Thongrattansiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, Abajo FJG, Hillenbrand R and Koppens F H L 2012 Nature 487 77
|
[27] |
Jun Y C, Kekatpure R D, White J S and Brongersma M L 2008 Phys. Rev. B 78 153111
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|