|
|
Disappearance of the Dirac cone in silicene due to the presence of an electric field |
D. A. Rowlands, Zhang Yu-Zhong (张宇钟) |
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China |
|
|
Abstract Using the two-dimensional ionic Hubbard model as a simple basis for describing the electronic structure of silicene in the presence of an electric field induced by the substrate, we use the coherent-potential approximation to calculate the zero-temperature phase diagram and the associated spectral function at half filling. We find that any degree of symmetry-breaking induced by the electric field causes the silicene structure to lose its Dirac fermion characteristics, thus providing a simple mechanism for the disappearance of the Dirac cone.
|
Received: 03 December 2013
Revised: 10 December 2013
Accepted manuscript online:
|
PACS:
|
71.10.-w
|
(Theories and models of many-electron systems)
|
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174219), the Program for New Century Excellent Talents in Universities, China (Grant No. NCET-13-0428), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110072110044), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Education Ministry of China. |
Corresponding Authors:
Zhang Yu-Zhong
E-mail: yzzhang@tongji.edu.cn
|
Cite this article:
D. A. Rowlands, Zhang Yu-Zhong (张宇钟) Disappearance of the Dirac cone in silicene due to the presence of an electric field 2014 Chin. Phys. B 23 037101
|
[1] |
Kara A, Enriquez H, Seitsonen A P, Lew Yan Voon L C, Vizzini S, Aufray B and Oughaddou H 2012 Surface Science Reports 67 1
|
[2] |
Chen L and Wu K 2013 Physics 42 604
|
[3] |
Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[4] |
Wang S K, Tian H Y, Yang Y H and Wang J 2014 Chin. Phys. B 23 017203
|
[5] |
Cheng G, Liu P F and Li Z T 2013 Chin. Phys. B 22 046201
|
[6] |
Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
|
[7] |
Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
|
[8] |
Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
|
[9] |
Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
|
[10] |
Cahangirov S, Topsaka M, Akturk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
|
[11] |
Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
|
[12] |
Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 076801
|
[13] |
Hubbard J and Torrance J B 1981 Phys. Rev. Lett. 47 1750
|
[14] |
Fabrizio M, Gogolin A O and Nersesyan A A 1999 Phys. Rev. Lett. 83 2014
|
[15] |
Zhang Y Z, Wu C Q and Lin H Q 2003 Phys. Rev. B 67 205109
|
[16] |
Xu J, Wang Z G, Chen Y G, Shi Y L and Chen H 2005 Acta Phys. Sin. 54 307 (in Chinese)
|
[17] |
Garg A, Krishnamurthy H R and Randeria M 2006 Phys. Rev. Lett. 97 046403
|
[18] |
Kancharla S S and Dagotto E 2007 Phys. Rev. Lett. 98 016402
|
[19] |
Hoang A T 2010 J. Phys.: Condens. Matter 22 095602
|
[20] |
Soven P 1967 Phys. Rev. 156 809
|
[21] |
Hubbard J 1964 Proc. Roy. Soc. (London) A276 401
|
[22] |
Györffy B L, Barbiem A, Staunton J B, Shelton W A and Stocks G M 1991 Physica B: Condensed Matter 172 35
|
[23] |
Gebhard F 1997 The Mott Metal-Insulator Transition: Models and Methods, Springer Series in Solid-State Sciences (Berlin: Springer)
|
[24] |
Le D A and Hoang A T 2012 Proc. Natl. Conf. Theor. Phys. 37 73
|
[25] |
Le D A 2013 Modern Physics Letters B 27 1350046
|
[26] |
Watanabe T and Ishihara S 2013 J. Phys. Soc. Jpn. 82 034704
|
[27] |
Zhang L D, Yang F and Yao Y 2013 arXiv:1309.7347
|
[28] |
Ekuma C E, Terletska H, Meng Z Y, Moreno J, Jarrell M, Mahmoudian S and Dobrosavljevic V 2013 arXiv:1306.5712
|
[29] |
Meng Z Y, Lang T C, Wessel S, Assaad F F and Muramatsu A 2010 Nature 464 847
|
[30] |
He R Q and Lu Z Y 2012 Phys. Rev. B 86 045105
|
[31] |
Sorella S, Otsuka Y and Yunoki S 2012 Scientific Reports 2 992
|
[32] |
Sorella S and Tosatti E 1992 Europhys. Lett. 19 699
|
[33] |
Wu W, Chen Y H, Tao H S, Tong N H and Liu W M 2010 Phys. Rev. B 82 245102
|
[34] |
Liebsch A 2011 Phys. Rev. B 83 035113
|
[35] |
Tran M T and Kuroki K 2009 Phys. Rev. B 79 125125
|
[36] |
Jafari S A 2009 Eur. Phys. J. B 68 537
|
[37] |
Arafune R, Lin C L, Nagao R, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 229701
|
[38] |
Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2013 Phys. Rev. Lett. 110 229702
|
[39] |
Wallace P R 1947 Phys. Rev. 71 622
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|