Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 037101    DOI: 10.1088/1674-1056/23/3/037101
RAPID COMMUNICATION Prev   Next  

Disappearance of the Dirac cone in silicene due to the presence of an electric field

D. A. Rowlands, Zhang Yu-Zhong (张宇钟)
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract  Using the two-dimensional ionic Hubbard model as a simple basis for describing the electronic structure of silicene in the presence of an electric field induced by the substrate, we use the coherent-potential approximation to calculate the zero-temperature phase diagram and the associated spectral function at half filling. We find that any degree of symmetry-breaking induced by the electric field causes the silicene structure to lose its Dirac fermion characteristics, thus providing a simple mechanism for the disappearance of the Dirac cone.
Keywords:  silicene      Dirac cone      ionic Hubbard model      coherent-potential approximation  
Received:  03 December 2013      Revised:  10 December 2013      Accepted manuscript online: 
PACS:  71.10.-w (Theories and models of many-electron systems)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174219), the Program for New Century Excellent Talents in Universities, China (Grant No. NCET-13-0428), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110072110044), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, China, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Education Ministry of China.
Corresponding Authors:  Zhang Yu-Zhong     E-mail:  yzzhang@tongji.edu.cn

Cite this article: 

D. A. Rowlands, Zhang Yu-Zhong (张宇钟) Disappearance of the Dirac cone in silicene due to the presence of an electric field 2014 Chin. Phys. B 23 037101

[1] Kara A, Enriquez H, Seitsonen A P, Lew Yan Voon L C, Vizzini S, Aufray B and Oughaddou H 2012 Surface Science Reports 67 1
[2] Chen L and Wu K 2013 Physics 42 604
[3] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Wang S K, Tian H Y, Yang Y H and Wang J 2014 Chin. Phys. B 23 017203
[5] Cheng G, Liu P F and Li Z T 2013 Chin. Phys. B 22 046201
[6] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[7] Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N and Kawai M 2012 Appl. Phys. Express 5 045802
[8] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[9] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
[10] Cahangirov S, Topsaka M, Akturk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[11] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[12] Lin C L, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 076801
[13] Hubbard J and Torrance J B 1981 Phys. Rev. Lett. 47 1750
[14] Fabrizio M, Gogolin A O and Nersesyan A A 1999 Phys. Rev. Lett. 83 2014
[15] Zhang Y Z, Wu C Q and Lin H Q 2003 Phys. Rev. B 67 205109
[16] Xu J, Wang Z G, Chen Y G, Shi Y L and Chen H 2005 Acta Phys. Sin. 54 307 (in Chinese)
[17] Garg A, Krishnamurthy H R and Randeria M 2006 Phys. Rev. Lett. 97 046403
[18] Kancharla S S and Dagotto E 2007 Phys. Rev. Lett. 98 016402
[19] Hoang A T 2010 J. Phys.: Condens. Matter 22 095602
[20] Soven P 1967 Phys. Rev. 156 809
[21] Hubbard J 1964 Proc. Roy. Soc. (London) A276 401
[22] Györffy B L, Barbiem A, Staunton J B, Shelton W A and Stocks G M 1991 Physica B: Condensed Matter 172 35
[23] Gebhard F 1997 The Mott Metal-Insulator Transition: Models and Methods, Springer Series in Solid-State Sciences (Berlin: Springer)
[24] Le D A and Hoang A T 2012 Proc. Natl. Conf. Theor. Phys. 37 73
[25] Le D A 2013 Modern Physics Letters B 27 1350046
[26] Watanabe T and Ishihara S 2013 J. Phys. Soc. Jpn. 82 034704
[27] Zhang L D, Yang F and Yao Y 2013 arXiv:1309.7347
[28] Ekuma C E, Terletska H, Meng Z Y, Moreno J, Jarrell M, Mahmoudian S and Dobrosavljevic V 2013 arXiv:1306.5712
[29] Meng Z Y, Lang T C, Wessel S, Assaad F F and Muramatsu A 2010 Nature 464 847
[30] He R Q and Lu Z Y 2012 Phys. Rev. B 86 045105
[31] Sorella S, Otsuka Y and Yunoki S 2012 Scientific Reports 2 992
[32] Sorella S and Tosatti E 1992 Europhys. Lett. 19 699
[33] Wu W, Chen Y H, Tao H S, Tong N H and Liu W M 2010 Phys. Rev. B 82 245102
[34] Liebsch A 2011 Phys. Rev. B 83 035113
[35] Tran M T and Kuroki K 2009 Phys. Rev. B 79 125125
[36] Jafari S A 2009 Eur. Phys. J. B 68 537
[37] Arafune R, Lin C L, Nagao R, Kawai M and Takagi N 2013 Phys. Rev. Lett. 110 229701
[38] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2013 Phys. Rev. Lett. 110 229702
[39] Wallace P R 1947 Phys. Rev. 71 622
[1] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[2] Tunable valley filter efficiency by spin-orbit coupling in silicene nanoconstrictions
Yi-Jian Shi(施一剑), Yuan-Chun Wang(王园春), and Peng-Jun Wang(汪鹏君). Chin. Phys. B, 2021, 30(5): 057201.
[3] Goos-Hänchen-like shift related to spin and valley polarization in ferromagnetic silicene
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2021, 30(10): 107302.
[4] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[5] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[6] A simple rule for finding Dirac cones in bilayered perovskites
Xuejiao Chen(陈雪娇), Lei Liu(刘雷), Dezhen Shen(申德振). Chin. Phys. B, 2019, 28(7): 077106.
[7] Hydrogenated antimonene as quantum spin Hall insulator: A first-principles study
Xin He(贺欣), Ji-Biao Li(李佶彪). Chin. Phys. B, 2019, 28(3): 037301.
[8] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
[9] Generation of valley pump currents in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克). Chin. Phys. B, 2019, 28(1): 017204.
[10] Electric field manipulation of multiple nonequivalent Dirac cones in the electronic structures of hexagonal CrB4 sheet
Jinkun Wang(王锦坤), Yajiao Ke(柯亚娇), Qingxing Xie(谢晴兴), Yanli Li(李艳丽), Jiafu Wang(王嘉赋). Chin. Phys. B, 2018, 27(9): 097304.
[11] Electronic properties of silicene in BN/silicene van der Waals heterostructures
Ze-Bin Wu(吴泽宾), Yu-Yang Zhang(张余洋), Geng Li(李更), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 077302.
[12] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[13] Spin-current pump in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2018, 27(5): 057801.
[14] Distinct edge states and optical conductivities in the zigzag and armchair silicene nanoribbons under exchange and electric fields
Jianfei Zou(邹剑飞), Jing Kang(康静). Chin. Phys. B, 2018, 27(3): 037301.
[15] Comparisons of electrical and optical properties between graphene and silicene-A review
Wirth-Lima A J, Silva M G, Sombra A S B. Chin. Phys. B, 2018, 27(2): 023201.
No Suggested Reading articles found!