CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effects of N doping on photoelectric properties of along different directions of ZnO bulk and nanotube |
Zheng Hong-Mei (郑红梅)a, Fang Xiao-Yong (房晓勇)a, Cai Li-Xia (蔡丽霞)a, Yin Ai-Cha (尹爱查)a, Jin Hai-Bo (金海波)b, Yu Xiao-Xia (于晓霞)a, Cao Mao-Sheng (曹茂盛)b |
a School of Science, Yanshan University, Qinhuangdao 066004, China; b School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China |
|
|
Abstract The electronic structures and optical properties of N-doped ZnO bulks and nanotubes are investigated using the first-principles density functional method. The calculated results show that the main optical parameters of ZnO bulks are isotropic (especially in the high frequency region), while ZnO nanotubes exhibit anisotropic optical properties. N doping results show that ZnO bulks and nanotubes present more obvious anisotropies in the low-frequency region. Thereinto, the optical parameters of N-doped ZnO bulks along the [100] direction are greater than those along the [001] direction, while for N-doped nanotubes, the variable quantities of optical parameters along the [100] direction are less than those along the [001] direction. In addition, refractive indexes, electrical conductivities, dielectric constants, and absorption coefficients of ZnO bulks and nanotubes each contain an obvious spectral band in the deep ultraviolet (UV) (100 nm~ 300 nm). For each of N-doped ZnO bulks and nanotubes, a spectral peak appears in the UV and visible light region, showing that N doping can broaden the application scope of the optical properties of ZnO.
|
Received: 04 April 2014
Revised: 30 June 2014
Accepted manuscript online:
|
PACS:
|
61.46.Fg
|
(Nanotubes)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
63.20.dk
|
(First-principles theory)
|
|
Fund: Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 51132002) and the Natural Science Foundation of Hebei Province, China (Grant No. A2011203026). |
Corresponding Authors:
Fang Xiao-Yong, Cao Mao-Sheng
E-mail: fang@ysu.edu.cn;caomaosheng@bit.edu.cn
|
Cite this article:
Zheng Hong-Mei (郑红梅), Fang Xiao-Yong (房晓勇), Cai Li-Xia (蔡丽霞), Yin Ai-Cha (尹爱查), Jin Hai-Bo (金海波), Yu Xiao-Xia (于晓霞), Cao Mao-Sheng (曹茂盛) Effects of N doping on photoelectric properties of along different directions of ZnO bulk and nanotube 2014 Chin. Phys. B 23 126102
|
|
| [1] | van Vugt L K, Ruhle S, Ravindran P, Gerritsen H C, Kuipers L and Vanmaekelbergh D 2006 Phys. Rev. Lett. 97 147401
|
|
| [2] | Wang R P, Xu G and Jin P 2004 Phys. Rev. B 69 113303
|
|
| [3] | Grabowska J, Meaney A, Nanda K K, Mosnier J P, Henry M O, Duclere J R and McGlynn E 2005 Phys. Rev. B 71 115439
|
|
| [4] | Koukli N 2008 Adv. Mater. 20 2190
|
|
| [5] | Pan H, Luo J Z, Sun H, Feng Y P, Poh C K and Lin J Y 2006 Nanotechnology 17 2963
|
|
| [6] | MacDonald A H, Schiffer P and Samarth N 2005 Nat. Mater. 4 195
|
|
| [7] | Huang M H, Mao S, Feick H, Yan Y H, Wu V Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897
|
|
| [8] | Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M and Hosono H 2003 Science 300 1269
|
|
| [9] | Suchea M, Christoulakis S, Moschovis K, Katsarakis N and Kiriakidis G 2006 Thin Solid Films 515 551
|
|
| [10] | Fang X Y, Shi X L, Cao M S and Yuan J 2008 J. Appl. Phys. 104 096101
|
|
| [11] | Fang X Y, Cao M S, Shi X L, Hou Z L, Song W L and Yuan J 2010 J. Appl. Phys. 107 054304
|
|
| [12] | Gong W, Xu Z, Zhao S L, Liu X D, Fan X, Yang Q Q and Kong C 2013 Chin. Phys. B 22 128402
|
|
| [13] | Pan Y W, Ren S T, Qu S L and Wang Q 2013 Chin. Phys. B 22 118102
|
|
| [14] | Shi L H, Chen J, Zhang G and Li B W 2012 Phys. Lett. A 376 978
|
|
| [15] | Dhara S and Giri P K 2012 Chem. Phys. Lett. 541 39
|
|
| [16] | Thomas M A, Sun W W and Cui J B 2012 J. Phys. Chem. C 116 6383
|
|
| [17] | Sieber B, Liu H Q, Piret G, Laureyns J, Roussel P, Gelloz B, Szunerits S and Boukherroub R 2009 J. Phys. Chem. C 113 13646
|
|
| [18] | Wu K P, Gu S L, Ye J D, Tang K, Zhu S M, Zhou M R, Huang Y R, Zhang R and Zheng Y D 2013 Chin. Phys. B 22 107103
|
|
| [19] | Xu W Z, Ye Z Z, Ma D W, Lu H M, Zhu L P, Zhao B H, Yang X D and Xu Z Y 2005 Appl. Phys. Lett. 87 093110
|
|
| [20] | Xing Y J, Xi Z H, Zhang X D, Song J H, Wang R M, Xu J, Xue Z Q and Yu D P 2004 Solid State Commun. 129 671
|
|
| [21] | Xing Y J, Xi Z H, Xue Z Q, Zhang X D, Song J H, Wang R M, Xu J, Song Y, Zhang S L and Yu D P 2003 Appl. Phys. Lett. 83 1689
|
|
| [22] | Elizondo S L and Mintmire J W 2007 J. Phys. Chem. C 111 17821
|
|
| [23] | Yang Y R, Yan X H, Guo Z H and Deng Y X 2008 Chin. Phys. B 17 3433
|
|
| [24] | Dong J T, Zhang F C, Zhang W H and Zhang Z Y 2013 Sci. China: Phys. Mech. Astron. 56 706
|
|
| [25] | Chai G L, Lin C S, Wang J Y, Zhang M Y, Wei J and Cheng W D 2011 J. Phys. Chem. C 115 2907
|
|
| [26] | Moradian R and Shahrokhi M 2012 Physica E 44 1760
|
|
| [27] | Wang S F, Zhang J M, Chen L Y and Xu K W 2012 J. Supercond. Nov. Magn. 25 2457
|
|
| [28] | Moradian R and Shahrokhi M 2013 J. Phys. Chem. Solids 74 1063
|
|
| [29] | Feng X Y, Zhang C W, Xu X J and Wang P J 2013 Nanoscale Res. Lett. 8 365
|
|
| [30] | Peyghan A A and Noei M 2014 Physica B 432 105
|
|
| [31] | Gao J Y, Zhang X Z, Sun Y H, Zhao Q and Yu D P 2010 Nanotechnology 21 245703
|
|
| [32] | Xu H, Rosa A L, Frauenheim T and Zhang P Q 2010 Phys. Status Solidi B 247 2195
|
|
| [33] | Wang F Z, Liu B, Zha Z J and Yuan S C 2009 Physica E 41 879
|
|
| [34] | He A L, Wang X Q, Fan Y Q and Feng Y P 2010 J. Appl. Phys. 108 084308
|
|
| [35] | Song D M and Li J C 2012 Comput. Mater. Sci. 65 175
|
|
| [36] | Zhou Y, Wang K, Fang X Y, Hou Z L, Jin H B and Cao M S 2012 Chin. Phys. Lett. 29 077102
|
|
| [37] | Feng G Y, Fang X Y, Wang J J, Zhou Y, Lu R, Yuan J and Cao M S 2010 Physica B 405 2625
|
|
| [38] | Sun S B, Chang X T, Li X J and Li Z J 2013 Ceram. Int. 39 5197
|
|
| [39] | Nian H, Hahn S H, Koo K K, Shin E W and Kim E J 2009 Mater. Lett. 63 2246
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|