Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 126102    DOI: 10.1088/1674-1056/23/12/126102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of N doping on photoelectric properties of along different directions of ZnO bulk and nanotube

Zheng Hong-Mei (郑红梅)a, Fang Xiao-Yong (房晓勇)a, Cai Li-Xia (蔡丽霞)a, Yin Ai-Cha (尹爱查)a, Jin Hai-Bo (金海波)b, Yu Xiao-Xia (于晓霞)a, Cao Mao-Sheng (曹茂盛)b
a School of Science, Yanshan University, Qinhuangdao 066004, China;
b School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract  The electronic structures and optical properties of N-doped ZnO bulks and nanotubes are investigated using the first-principles density functional method. The calculated results show that the main optical parameters of ZnO bulks are isotropic (especially in the high frequency region), while ZnO nanotubes exhibit anisotropic optical properties. N doping results show that ZnO bulks and nanotubes present more obvious anisotropies in the low-frequency region. Thereinto, the optical parameters of N-doped ZnO bulks along the [100] direction are greater than those along the [001] direction, while for N-doped nanotubes, the variable quantities of optical parameters along the [100] direction are less than those along the [001] direction. In addition, refractive indexes, electrical conductivities, dielectric constants, and absorption coefficients of ZnO bulks and nanotubes each contain an obvious spectral band in the deep ultraviolet (UV) (100 nm~ 300 nm). For each of N-doped ZnO bulks and nanotubes, a spectral peak appears in the UV and visible light region, showing that N doping can broaden the application scope of the optical properties of ZnO.
Keywords:  ZnO NTs      N-doped ZnO      electronic structure      optical properties      first-principles theory  
Received:  04 April 2014      Revised:  30 June 2014      Accepted manuscript online: 
PACS:  61.46.Fg (Nanotubes)  
  61.72.uj (III-V and II-VI semiconductors)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 51132002) and the Natural Science Foundation of Hebei Province, China (Grant No. A2011203026).
Corresponding Authors:  Fang Xiao-Yong, Cao Mao-Sheng     E-mail:  fang@ysu.edu.cn;caomaosheng@bit.edu.cn

Cite this article: 

Zheng Hong-Mei (郑红梅), Fang Xiao-Yong (房晓勇), Cai Li-Xia (蔡丽霞), Yin Ai-Cha (尹爱查), Jin Hai-Bo (金海波), Yu Xiao-Xia (于晓霞), Cao Mao-Sheng (曹茂盛) Effects of N doping on photoelectric properties of along different directions of ZnO bulk and nanotube 2014 Chin. Phys. B 23 126102

[1]van Vugt L K, Ruhle S, Ravindran P, Gerritsen H C, Kuipers L and Vanmaekelbergh D 2006 Phys. Rev. Lett. 97 147401
[2]Wang R P, Xu G and Jin P 2004 Phys. Rev. B 69 113303
[3]Grabowska J, Meaney A, Nanda K K, Mosnier J P, Henry M O, Duclere J R and McGlynn E 2005 Phys. Rev. B 71 115439
[4]Koukli N 2008 Adv. Mater. 20 2190
[5]Pan H, Luo J Z, Sun H, Feng Y P, Poh C K and Lin J Y 2006 Nanotechnology 17 2963
[6]MacDonald A H, Schiffer P and Samarth N 2005 Nat. Mater. 4 195
[7]Huang M H, Mao S, Feick H, Yan Y H, Wu V Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897
[8]Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M and Hosono H 2003 Science 300 1269
[9]Suchea M, Christoulakis S, Moschovis K, Katsarakis N and Kiriakidis G 2006 Thin Solid Films 515 551
[10]Fang X Y, Shi X L, Cao M S and Yuan J 2008 J. Appl. Phys. 104 096101
[11]Fang X Y, Cao M S, Shi X L, Hou Z L, Song W L and Yuan J 2010 J. Appl. Phys. 107 054304
[12]Gong W, Xu Z, Zhao S L, Liu X D, Fan X, Yang Q Q and Kong C 2013 Chin. Phys. B 22 128402
[13]Pan Y W, Ren S T, Qu S L and Wang Q 2013 Chin. Phys. B 22 118102
[14]Shi L H, Chen J, Zhang G and Li B W 2012 Phys. Lett. A 376 978
[15]Dhara S and Giri P K 2012 Chem. Phys. Lett. 541 39
[16]Thomas M A, Sun W W and Cui J B 2012 J. Phys. Chem. C 116 6383
[17]Sieber B, Liu H Q, Piret G, Laureyns J, Roussel P, Gelloz B, Szunerits S and Boukherroub R 2009 J. Phys. Chem. C 113 13646
[18]Wu K P, Gu S L, Ye J D, Tang K, Zhu S M, Zhou M R, Huang Y R, Zhang R and Zheng Y D 2013 Chin. Phys. B 22 107103
[19]Xu W Z, Ye Z Z, Ma D W, Lu H M, Zhu L P, Zhao B H, Yang X D and Xu Z Y 2005 Appl. Phys. Lett. 87 093110
[20]Xing Y J, Xi Z H, Zhang X D, Song J H, Wang R M, Xu J, Xue Z Q and Yu D P 2004 Solid State Commun. 129 671
[21]Xing Y J, Xi Z H, Xue Z Q, Zhang X D, Song J H, Wang R M, Xu J, Song Y, Zhang S L and Yu D P 2003 Appl. Phys. Lett. 83 1689
[22]Elizondo S L and Mintmire J W 2007 J. Phys. Chem. C 111 17821
[23]Yang Y R, Yan X H, Guo Z H and Deng Y X 2008 Chin. Phys. B 17 3433
[24]Dong J T, Zhang F C, Zhang W H and Zhang Z Y 2013 Sci. China: Phys. Mech. Astron. 56 706
[25]Chai G L, Lin C S, Wang J Y, Zhang M Y, Wei J and Cheng W D 2011 J. Phys. Chem. C 115 2907
[26]Moradian R and Shahrokhi M 2012 Physica E 44 1760
[27]Wang S F, Zhang J M, Chen L Y and Xu K W 2012 J. Supercond. Nov. Magn. 25 2457
[28]Moradian R and Shahrokhi M 2013 J. Phys. Chem. Solids 74 1063
[29]Feng X Y, Zhang C W, Xu X J and Wang P J 2013 Nanoscale Res. Lett. 8 365
[30]Peyghan A A and Noei M 2014 Physica B 432 105
[31]Gao J Y, Zhang X Z, Sun Y H, Zhao Q and Yu D P 2010 Nanotechnology 21 245703
[32]Xu H, Rosa A L, Frauenheim T and Zhang P Q 2010 Phys. Status Solidi B 247 2195
[33]Wang F Z, Liu B, Zha Z J and Yuan S C 2009 Physica E 41 879
[34]He A L, Wang X Q, Fan Y Q and Feng Y P 2010 J. Appl. Phys. 108 084308
[35]Song D M and Li J C 2012 Comput. Mater. Sci. 65 175
[36]Zhou Y, Wang K, Fang X Y, Hou Z L, Jin H B and Cao M S 2012 Chin. Phys. Lett. 29 077102
[37]Feng G Y, Fang X Y, Wang J J, Zhou Y, Lu R, Yuan J and Cao M S 2010 Physica B 405 2625
[38]Sun S B, Chang X T, Li X J and Li Z J 2013 Ceram. Int. 39 5197
[39]Nian H, Hahn S H, Koo K K, Shin E W and Kim E J 2009 Mater. Lett. 63 2246
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[8] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[9] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[10] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[11] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[12] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[13] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[14] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!