Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 118801    DOI: 10.1088/1674-1056/23/11/118801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Realization of conformal doping on multicrystalline silicon solar cells and black silicon solar cells by plasma immersion ion implantation

Shen Ze-Nan (沈泽南), Xia Yang (夏洋), Liu Bang-Wu (刘邦武), Liu Jin-Hu (刘金虎), Li Chao-Bo (李超波), Li Yong-Tao (李勇滔)
Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  

Emitted multi-crystalline silicon and black silicon solar cells are conformal doped by ion implantation using the plasma immersion ion implantation (PⅢ) technique. The non-uniformity of emitter doping is lower than 5%. The secondary ion mass spectrometer profile indicates that the PⅢ technique obtained 100-nm shallow emitter and the emitter depth could be impelled by furnace annealing to 220 nm and 330 nm at 850 ℃ with one and two hours, respectively. Furnace annealing at 850 ℃ could effectively electrically activate the dopants in the silicon. The efficiency of the black silicon solar cell is 14.84% higher than that of the mc-silicon solar cell due to more incident light being absorbed.

Keywords:  solar cells      plasma immersion ion implantation      conformal doping      black silicon  
Received:  05 March 2014      Revised:  29 May 2014      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  85.40.Ry (Impurity doping, diffusion and ion implantation technology)  
  52.77.Dq (Plasma-based ion implantation and deposition)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61106060 and 61274059) and the National High Technology Research and Development Program of China (Grant No. 2012AA052401).

Corresponding Authors:  Liu Bang-Wu     E-mail:  liubangwu@ime.ac.cn

Cite this article: 

Shen Ze-Nan (沈泽南), Xia Yang (夏洋), Liu Bang-Wu (刘邦武), Liu Jin-Hu (刘金虎), Li Chao-Bo (李超波), Li Yong-Tao (李勇滔) Realization of conformal doping on multicrystalline silicon solar cells and black silicon solar cells by plasma immersion ion implantation 2014 Chin. Phys. B 23 118801

[1] Bazer-Bachi B, Fourmond E, Papet P, Bounaas L, Nichiporuk O, Le Quang N and Lemiti M 2012 Sol. Energy Mater. Sol. Cells 105 137
[2] Rohatgi A, Meier D L, McPherson B, Ok Y W, Upadhyaya A D, Lai J H and Zimbardi F 2012 Energy Procedia 15 10
[3] Lanterne A, Gall S, Manuel S, Monna R, Ramappa D, Yuan M, Rivalin P and Tauzin A 2012 Energy Procedia 27 580
[4] Hieslmair H, Mandrell L, Latchford I, Chun M, Sullivan J and Adibi B 2012 Energy Procedia 27 122
[5] Bateman N, Sullivan P, Reichel C, Benick J and Hermle M 2011 Energy Procedia 8 509
[6] Jeon M, Lee J, Kim S, Lee W and Cho E 2011 Mater. Sci. Eng. B 176 1285
[7] Perchec J L, Lanterne A, Michel T, Gall S, Monna R, Torregrosa F and Roux L 2013 Energy Procedia 33 18
[8] Torregrosa F, Laviron C, Faik H, Barakel D, Milesi F and Beccaccia S 2004 Surf. Coat. Technol. 186 93
[9] Vervisch V, Barakel D, Torregrosa F, Ottaviani L and Pasquinelli M 2006 AIP Conf. Proc. 1 253
[10] Xia Y, Liu B W, Liu J, Shen Z N and Li C B 2011 Sol. Energy 7 1574
[11] Zhang X R, Gao C M, Zhou Y and Wang Z P 2011 Chin. Phys. B 20 068105
[12] Zhang L, Shen H L, Yue Z H, Jiang F, Wu T R and Pan Y Y 2013 Chin. Phys. B 22 016803
[13] Boo H, Lee J H, Kang M G, Lee K, Kim S, Hwang H C, Hwang W J, Kang H O, Park S, Tark S J and Kim D 2012 Int. J. Photoenergy 2012
[14] Solmi S, Parisini A, Angelucci R, Armigliato A, Nobili D and Moro L 1996 Phys. Rev. B 12 7836
[15] Shaaban E R, Lohner T, Pinter I, Petrik P, Khanh N Q, Horvath Z E and Gyulai J 2003 Vacuum 1 27
[16] Macdonald D and Geerligs L J 2004 Appl. Phys. Lett. 18 4061
[17] Vähänissi V, Haarahiltunen A, Talvitie H, Yli-Koski M and Savin H 2013 Prog. Photov. 5 1127
[18] Prucnal S, Abendroth B, Krockert K, König K, Henke D, Kolitsch A, Moller H J and Skorupa W 2012 J. Appl. Phys. 12 123104
[19] Kwon T Y, Yang D H, Ju M K, Jung W W, Kim S Y, Lee Y W, Gong D Y and Yi J 2011 Sol. Energy Mater. Sol. Cells 1 14
[20] Peaker A R, Markevich V P, Hamilton B, Parada G, Dudas A, Pap A, Don E, Lim B, Schmidt J, Yu L, Yoon Y and Rozgonyi G 2012 Phys. Status. Solidi. (a) 10 1884
[21] Taishi T, Hoshikawa T, Yamatani M, Shirasawa K, Huang X, Uda S and Hoshikawa K 2007 J. Cryst. Growth 2 452
[1] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[2] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[3] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[4] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[5] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[6] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[7] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[8] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[9] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
[10] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[11] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[12] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[13] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[14] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[15] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
No Suggested Reading articles found!