INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Realization of conformal doping on multicrystalline silicon solar cells and black silicon solar cells by plasma immersion ion implantation |
Shen Ze-Nan (沈泽南), Xia Yang (夏洋), Liu Bang-Wu (刘邦武), Liu Jin-Hu (刘金虎), Li Chao-Bo (李超波), Li Yong-Tao (李勇滔) |
Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China |
|
|
Abstract Emitted multi-crystalline silicon and black silicon solar cells are conformal doped by ion implantation using the plasma immersion ion implantation (PⅢ) technique. The non-uniformity of emitter doping is lower than 5%. The secondary ion mass spectrometer profile indicates that the PⅢ technique obtained 100-nm shallow emitter and the emitter depth could be impelled by furnace annealing to 220 nm and 330 nm at 850 ℃ with one and two hours, respectively. Furnace annealing at 850 ℃ could effectively electrically activate the dopants in the silicon. The efficiency of the black silicon solar cell is 14.84% higher than that of the mc-silicon solar cell due to more incident light being absorbed.
|
Received: 05 March 2014
Revised: 29 May 2014
Accepted manuscript online:
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
85.40.Ry
|
(Impurity doping, diffusion and ion implantation technology)
|
|
52.77.Dq
|
(Plasma-based ion implantation and deposition)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61106060 and 61274059) and the National High Technology Research and Development Program of China (Grant No. 2012AA052401). |
Corresponding Authors:
Liu Bang-Wu
E-mail: liubangwu@ime.ac.cn
|
Cite this article:
Shen Ze-Nan (沈泽南), Xia Yang (夏洋), Liu Bang-Wu (刘邦武), Liu Jin-Hu (刘金虎), Li Chao-Bo (李超波), Li Yong-Tao (李勇滔) Realization of conformal doping on multicrystalline silicon solar cells and black silicon solar cells by plasma immersion ion implantation 2014 Chin. Phys. B 23 118801
|
[1] |
Bazer-Bachi B, Fourmond E, Papet P, Bounaas L, Nichiporuk O, Le Quang N and Lemiti M 2012 Sol. Energy Mater. Sol. Cells 105 137
|
[2] |
Rohatgi A, Meier D L, McPherson B, Ok Y W, Upadhyaya A D, Lai J H and Zimbardi F 2012 Energy Procedia 15 10
|
[3] |
Lanterne A, Gall S, Manuel S, Monna R, Ramappa D, Yuan M, Rivalin P and Tauzin A 2012 Energy Procedia 27 580
|
[4] |
Hieslmair H, Mandrell L, Latchford I, Chun M, Sullivan J and Adibi B 2012 Energy Procedia 27 122
|
[5] |
Bateman N, Sullivan P, Reichel C, Benick J and Hermle M 2011 Energy Procedia 8 509
|
[6] |
Jeon M, Lee J, Kim S, Lee W and Cho E 2011 Mater. Sci. Eng. B 176 1285
|
[7] |
Perchec J L, Lanterne A, Michel T, Gall S, Monna R, Torregrosa F and Roux L 2013 Energy Procedia 33 18
|
[8] |
Torregrosa F, Laviron C, Faik H, Barakel D, Milesi F and Beccaccia S 2004 Surf. Coat. Technol. 186 93
|
[9] |
Vervisch V, Barakel D, Torregrosa F, Ottaviani L and Pasquinelli M 2006 AIP Conf. Proc. 1 253
|
[10] |
Xia Y, Liu B W, Liu J, Shen Z N and Li C B 2011 Sol. Energy 7 1574
|
[11] |
Zhang X R, Gao C M, Zhou Y and Wang Z P 2011 Chin. Phys. B 20 068105
|
[12] |
Zhang L, Shen H L, Yue Z H, Jiang F, Wu T R and Pan Y Y 2013 Chin. Phys. B 22 016803
|
[13] |
Boo H, Lee J H, Kang M G, Lee K, Kim S, Hwang H C, Hwang W J, Kang H O, Park S, Tark S J and Kim D 2012 Int. J. Photoenergy 2012
|
[14] |
Solmi S, Parisini A, Angelucci R, Armigliato A, Nobili D and Moro L 1996 Phys. Rev. B 12 7836
|
[15] |
Shaaban E R, Lohner T, Pinter I, Petrik P, Khanh N Q, Horvath Z E and Gyulai J 2003 Vacuum 1 27
|
[16] |
Macdonald D and Geerligs L J 2004 Appl. Phys. Lett. 18 4061
|
[17] |
Vähänissi V, Haarahiltunen A, Talvitie H, Yli-Koski M and Savin H 2013 Prog. Photov. 5 1127
|
[18] |
Prucnal S, Abendroth B, Krockert K, König K, Henke D, Kolitsch A, Moller H J and Skorupa W 2012 J. Appl. Phys. 12 123104
|
[19] |
Kwon T Y, Yang D H, Ju M K, Jung W W, Kim S Y, Lee Y W, Gong D Y and Yi J 2011 Sol. Energy Mater. Sol. Cells 1 14
|
[20] |
Peaker A R, Markevich V P, Hamilton B, Parada G, Dudas A, Pap A, Don E, Lim B, Schmidt J, Yu L, Yoon Y and Rozgonyi G 2012 Phys. Status. Solidi. (a) 10 1884
|
[21] |
Taishi T, Hoshikawa T, Yamatani M, Shirasawa K, Huang X, Uda S and Hoshikawa K 2007 J. Cryst. Growth 2 452
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|