Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 118704    DOI: 10.1088/1674-1056/23/11/118704
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Coupling of two-dimensional atomistic and continuum models for dynamic crack

Ren Guo-Wu (任国武), Tang Tie-Gang (汤铁钢)
Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  

A concurrent multiscale method of coupling atomistic and continuum models is presented in the two-dimensional system. The atomistic region is governed by molecular dynamics while the continuum region is represented by constructing the mass and stiffness matrix dependent on the coarsening of the grids, which ensures that they merge seamlessly. The low-pass phonon filter embedded in the handshaking region is utilized to effectively eliminate the spurious reflection of high-frequency phonons, while keeping the low-frequency phonons transparent. These schemes are demonstrated by numerically calculating the reflection and transmission coefficient, and by the further application of dynamic crack propagation subjected to mode-I tensile loading.

Keywords:  concurrent multiscale method      phonon filter      dynamic crack  
Received:  19 May 2014      Revised:  06 June 2014      Accepted manuscript online: 
PACS:  87.15.ap (Molecular dynamics simulation)  
  62.20.mm (Fracture)  
  63.20.-e (Phonons in crystal lattices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grants Nos. 11102191 and 11172279) and the Development Foundation of Institute of Fluid Physics, Chinese Academy of Engineering Physics (Grant No. SFZ20120402).

Corresponding Authors:  Ren Guo-Wu     E-mail:  guowu.ren@gmail.com

Cite this article: 

Ren Guo-Wu (任国武), Tang Tie-Gang (汤铁钢) Coupling of two-dimensional atomistic and continuum models for dynamic crack 2014 Chin. Phys. B 23 118704

[1] Miller R E and Tadmor E B 2009 Modell. Simul. Mater Sci. Eng. 17 053001
[2] Broughton J Q, Abraham F F, Bernstein N and Kaxiras E 1999 Phys. Rev. B 60 2391
[3] Lidorikis E, Bachlechner M E, Kalia R K, Nakano A and Vashishta P 2001 Phys. Rev. Lett. 87 86104
[4] Tadmor E B, Ortiz M and Phillips R 1996 Phil. Mag. A 73 1529
[5] Shao Y F, Yang X, Zhao X and Wang S Q 2012 Chin. Phys. B 21 093104
[6] Dupuy L M, Tadmor E B, Miller R E and Phillips R 2005 Phys. Rev. Lett. 95 060202
[7] Rudd R E and Broughton J Q 1998 Phys. Rev. B 58 R5893
[8] Rudd R E and Broughton J Q 2005 Phys. Rev. B 72 144104
[9] Wanger G J and Liu W K 2003 J. Comp. Phys. 190 249
[10] Xu M, Gracie R and Belytschko T 2010 Int. J. Numer. Meth. Engng. 81 1635
[11] Shilkrot L E, Miller R E and Curtin W A 2002 Phys. Rev. Lett. 89 025501
[12] Warner D H, Curtin W A and Qu S 2007 Nat. Mater. 6 876
[13] Hara S, Kumagai T, Izumi S and Sakai S 2009 Acta. Mater. 57 4209
[14] Luan B Q, Hyun S, Molinari J F, Bernstein N and Robbins M O 2006 Phys. Rev. B 74 46710
[15] Bazant Z P 1978 Comput. Method. Appl. Mech. Engrg. 16 91
[16] Zhou S J, Lomdahl P S, Thomson R and Holian B L 1996 Phys. Rev. Lett. 76 2318
[17] Qu S, Shastry V, Curtin W A and Miller R E 2005 Modell. Simul. Mater. Sci. Eng. 13 1101
[18] Doll J D, Myers L E and Adelman S A 1975 J. Chem. Phys. 63 4908
[19] Cai W, Koning M, Bulatov V V and Yip S 2000 Phys. Rev. Lett. 85 3213
[20] Weinan E and Huang Z 2001 Phys. Rev. Lett. 87 135501
[21] Yang J Z and Li X 2006 Phys. Rev. B 73 224111
[22] Namilae S, Nicholson D M, Nukala P K V V, Gao C Y, Osetsky Y N and Keffer D J 2007 Phys. Rev. B 76 144111
[23] To A C and Li S 2005 Phys. Rev. B 72 035414
[24] Jones R E and Kimmer C J 2010 Phys. Rev. B 81 094301
[25] Bouchbinder E, Fineberg J and Marder M 2010 Ann. Rev. Cond. Mat. 1 371
[26] Sharon E and Fineberg J 1999 Nature 397 333
[27] Ren G, Zhang D and Gong X 2011 Commun. Comput. Phys. 10 1305
[28] Hughes T J R 1987 The Finite Element Method (NJ: Prentice- Hall, Englewood Cliffs)
[29] Born M and Huang K 1954 Dynamical Theories of Cryatal Lattices (Oxford: Clarendo Press)
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[3] Modeling hydrogen exchange of proteins by a multiscale method
Wentao Zhu(祝文涛), Wenfei Li(李文飞), and Wei Wang(王炜). Chin. Phys. B, 2021, 30(7): 078701.
[4] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
[5] Folding nucleus and unfolding dynamics of protein 2GB1
Xuefeng Wei(韦学锋) and Yanting Wang(王延颋). Chin. Phys. B, 2021, 30(2): 028703.
[6] Effect of interaction between loop bases and ions on stability of G-quadruplex DNA
Han-Zhen Qiao(乔汉真), Yuan-Yan Wu(吴园燕), Yusong Tu(涂育松), and Cong-Min Ji(祭聪敏). Chin. Phys. B, 2021, 30(1): 018702.
[7] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[8] Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers
Tanlin Wei(魏坦琳), Lei Zhang(张蕾), Yong Zhang(张勇). Chin. Phys. B, 2020, 29(4): 048702.
[9] Effects of Mg2+ on the binding of the CREB/CRE complex: Full-atom molecular dynamics simulations
Song Mao(毛松), Shuai Wang(王帅), Haiyou Deng(邓海游), Ming Yi(易鸣). Chin. Phys. B, 2019, 28(7): 078701.
[10] Molecular dynamics simulations of membrane deformation induced by amphiphilic helices of Epsin, Sar1p, and Arf1
Zhen-Lu Li(李振鲁). Chin. Phys. B, 2018, 27(3): 038703.
[11] A network of conformational transitions in an unfolding process of HP-35 revealed by high-temperature MD simulation and a Markov state model
Dandan Shao(邵丹丹), Kaifu Gao(高恺夫). Chin. Phys. B, 2018, 27(1): 018701.
[12] Computational study of non-catalytic T-loop pocket on CDK proteins for drug development
Huiwen Wang(王慧雯), Kaili Wang(王凯丽), Zeyu Guan(管泽雨), Yiren Jian(简弋人), Ya Jia(贾亚), Fatah Kashanchi, Chen Zeng(曾辰), Yunjie Zhao(赵蕴杰). Chin. Phys. B, 2017, 26(12): 128702.
[13] Molecular dynamic simulation of the thermodynamic and kinetic properties of nucleotide base pair
Yu-Jie Wang(王宇杰), Zhen Wang(王珍), Yan-Li Wang(王晏莉), Wen-Bing Zhang(张文炳). Chin. Phys. B, 2017, 26(12): 128705.
[14] A damping boundary condition for atomistic-continuum coupling
Jie Zhang(张杰), Kiet Tieu, Guillaume Michal, Hongtao Zhu(朱洪涛), Liang Zhang(张亮), Lihong Su(苏利红), Guanyu Deng(邓关宇), Hui Wang(王辉). Chin. Phys. B, 2017, 26(6): 068702.
[15] Helix-like structure formation of a semi-flexible chain confined in a cylinder channel
Xiaohui Wen(温晓会), Tieyu Sun(孙铁昱), Wei-Bing Zhang(张卫兵), Chi-Hang Lam(林志恒), Linxi Zhang(章林溪), Huaping Zang(臧华平). Chin. Phys. B, 2016, 25(9): 093601.
No Suggested Reading articles found!