Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 114402    DOI: 10.1088/1674-1056/23/11/114402
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Collector optimization for tradeoff between breakdown voltage and cut-off frequency in SiGe HBT

Fu Qiang (付强)a b, Zhang Wan-Rong (张万荣)a, Jin Dong-Yue (金冬月)a, Ding Chun-Bao (丁春宝)a, Zhao Yan-Xiao (赵彦晓)a, Lu Dong (鲁东)a
a College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China;
b College of Physics, Liaoning University, Shenyang 110036, China
Abstract  

As is well known, there exists a tradeoff between the breakdown voltage BV CEO and the cut-off frequency fT for a standard heterojunction bipolar transistor (HBT). In this paper, this tradeoff is alleviated by collector doping engineering in the SiGe HBT by utilizing a novel composite of P+ and N- doping layers inside the collector-base (CB) space-charge region (SCR). Compared with the single N-type collector, the introduction of the thin P+ layers provides a reverse electric field weakening the electric field near the CB metallurgical junction without changing the field direction, and the thin N- layer further effectively lowers the electric field near the CB metallurgical junction. As a result, the electron temperature near the CB metallurgical junction is lowered, consequently suppressing the impact ionization, thus BVCEO is improved with a slight degradation in fT. The results show that the product of fT× BV CEO is improved from 309.51 GHz·V to 326.35 GHz·V.

Keywords:  SiGe heterojunction bipolar transistors (HBTs)      breakdown voltage      cut-off frequency      collector optimization  
Received:  22 October 2013      Revised:  08 April 2014      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 60776051, 61006059, and 61006044), the Beijing Municipal Natural Science Foundation, China (Grant Nos. 4142007, 4143059, 4082007, and 4122014), and the Beijing Municipal Education Committee, China (Grant Nos. KM200710005015 and KM200910005001).

Corresponding Authors:  Fu Qiang     E-mail:  duduffqq@sohu.com

Cite this article: 

Fu Qiang (付强), Zhang Wan-Rong (张万荣), Jin Dong-Yue (金冬月), Ding Chun-Bao (丁春宝), Zhao Yan-Xiao (赵彦晓), Lu Dong (鲁东) Collector optimization for tradeoff between breakdown voltage and cut-off frequency in SiGe HBT 2014 Chin. Phys. B 23 114402

[1] Yuan J H and Cressler J D 2011 IEEE Trans. Electron. Device 58 1655
[2] Jagannathan B, Khater M, Pagette F, Rieh J S, Angell D, Chen J, Florkey F, Golan D R, Greenberg R, Groves, Jeng S J, Johnson J, Mengistu E, Schonenberg K T, Schnalbel C M, Smith P, Stricker A, Ahlgren D, Freeman G, Stein K and Subbanna S 2002 IEEE Trans. Electron. Device 23 258
[3] Zhang W R, Yang J W, Liu H J, He Y, Gao F Y and Liu L M 2004 International Conference on Microwave and Milli-wave Technology (ICMMR/T), August 18-21, 2004 Beijing, China, p. 594
[4] Nellis K and Zampardi J 2004 IEEE Journal of Solid-State Circuit 39 1746
[5] Rieh J S, Khater M, Freeman G and Ahlgren D 2006 IEEE Trans. Electron. Device 53 2407
[6] Rieh J S, jagannathan B, Greenberg D, Freeman G and Subbanna S 2004 Solid State Electronics 48 339
[7] Geynet B, Chevalier P, Brossard F, Vandelle B, Schwartzmann T, Buczko M, Avenier G, Dutartre D, Dambrine G, Danneville F and Chantre A 2009 Solid State Electronics 53 873
[8] Xiong X Y, Zhang W, Xu J, Liu Z H, Chen C C, Huang W T, Li X Y, Zhong T and Qian P X 2004 J. Semiconduct. 25 1238
[9] Donkers J J T M, Vanhoucke T, Agarwal P, Jueting R J E, Meunier B P, Vijayaraghavan M N, Magnee P H C, Verheijen M A, De K R and Slotboom J W 2004 IEDM Technical Digest, December 13-15, 2004 San Francisco, USA, p. 243
[10] Xue C L, Shi W H, Cheng B W, Yao F and Wang Q M 2007 J. Semiconduct. 28(SUPPL) 435
[11] Zappa F, Lovati P and Lacaita A 1996 IEEE IPRM, April 21-25, 1996 Schwabisch Gmund, Germany, p. 628
[12] Xu X B, Zhang H M, Hu H Y and Li S C 2011 Chin. Phys. B 20 108502
[13] Guo L L Feng Q, Hao Y and Yang Y 2007 Acta Phys. Sin. 56 2895 (in Chinese)
[14] Li Q, Zhu J L, Wang W D and Wei X M 2011 Chin. Phys. B 20 117202
[15] Song Q W, Zhang Y M, Zhang Q and Lü H L 2010 Chin. Phys. B 19 087202
[16] Lü Y J, Xu D G, Liu P X, Lü D, Yao J Q, Wen Q Y and Zhang H W 2011 Chin. Phys. B 20 104205
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[6] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[7] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[8] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[9] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[10] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[11] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[12] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[13] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[14] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[15] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
No Suggested Reading articles found!