Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 114501    DOI: 10.1088/1674-1056/23/11/114501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Noether's theorem for non-conservative Hamilton system based on El-Nabulsi dynamical model extended by periodic laws

Long Zi-Xuan (龙梓轩)a, Zhang Yi (张毅)b
a College of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China;
b College of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
Abstract  

This paper focuses on the Noether symmetries and the conserved quantities for both holonomic and nonholonomic systems based on a new non-conservative dynamical model introduced by El-Nabulsi. First, the El-Nabulsi dynamical model which is based on a fractional integral extended by periodic laws is introduced, and El-Nabulsi-Hamilton's canonical equations for non-conservative Hamilton system with holonomic or nonholonomic constraints are established. Second, the definitions and criteria of El-Nabulsi-Noether symmetrical transformations and quasi-symmetrical transformations are presented in terms of the invariance of El-Nabulsi-Hamilton action under the infinitesimal transformations of the group. Finally, Noether's theorems for the non-conservative Hamilton system under the El-Nabulsi dynamical system are established, which reveal the relationship between the Noether symmetry and the conserved quantity of the system.

Keywords:  Noether'      s theorem      non-conservative Hamilton system      El-Nabulsi dynamical model      fractional integral extended by periodic laws  
Received:  02 April 2014      Revised:  02 May 2014      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  11.30.Na (Nonlinear and dynamical symmetries (spectrum-generating symmetries))  
  02.30.Xx (Calculus of variations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 10972151 and 11272227) and the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province, China (Grant No. CXLX11_0961).

Corresponding Authors:  Zhang Yi     E-mail:  weidiezh@gmail.com

Cite this article: 

Long Zi-Xuan (龙梓轩), Zhang Yi (张毅) Noether's theorem for non-conservative Hamilton system based on El-Nabulsi dynamical model extended by periodic laws 2014 Chin. Phys. B 23 114501

[1] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[2] Noether A E 1918 Nachr kgl Ges Wiss Göttingen. Math. Phys. KI II 235
[3] Candotti E, Palmieri C and Vitale B 1972 Amer. J. Phys. 40 424
[4] Desloge E A and Karch R I 1997 Amer. J. Phys. 45 336
[5] Djukić D J 1974 Arch. Mech. 26 243
[6] Djukić D J and Vujanović B D 1975 Acta Mech. 23 17
[7] Bahar L Y and Kwatny H G 1987 Int. J. Non-Linear Mech. 22 125
[8] Kalotas T M and Wybourne B G 1982 J. Phys. A: Math. Gen. 15 2077
[9] Vujanović B 1986 Acta Mech. 65 63
[10] Palmieri C and Vitale B 1970 Nuovo Cimento A 66 299
[11] Rosen J 1972 Ann. Phys. 69 349
[12] Candotti E, Palmieri C and Vitale B 1970 Nuovo Cimento A 70 233
[13] Sarlet W and Cantrijn F 1981 J. SIAM Rev. 23 467
[14] Sarlet W and Cantrijn F 1981 J. Phys. A: Math. Gen. 14 479
[15] Carinena J, Lopez C and Martinez E 1991 Acta Appl. Math. 25 127
[16] Rosenhaus V 2002 J. Math. Phys. 43 6129
[17] Sniatychi J 1998 Rep. Math. Phys. 42 5
[18] Crasmareanu M 2000 J. Nonlinear Mech. 35 947
[19] Li Z P 1981 Acta Phys. Sin. 30 1699 (in Chinese)
[20] Mei F X 1993 Sci. China Ser. A 36 1456
[21] Zhao Y Y and Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) (in Chinese)
[22] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[23] Mei F X and Wu H B 2009 Dynamics of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press)
[24] Luo S K, Guo Y X and Mei F X 2004 Acta Phys. Sin. 53 1271 (in Chinese)
[25] Luo S K 2007 Chin. Phys. 16 3182
[26] Zhang Y 2008 Acta Phys. Sin. 57 2643 (in Chinese)
[27] Zhang Y and Jin S X 2013 Acta Phys. Sin. 62 234502 (in Chinese)
[28] Jin S X and Zhang Y 2014 Chin. Phys. B 23 054501
[29] Fu J L, Chen L Q and Chen B Y 2009 Sci. China Ser. G 39 1320 (in Chinese)
[30] Fu J L, Chen L Q and Chen B Y 2009 Phys. Lett. A 373 409
[31] Wang X X, Sun X T, Zhang M L, Xie Y L and Jia L Q 2012 Acta Phys. Sin. 61 064501 (in Chinese)
[32] Shang M and Chen X W 2006 Chin. Phys. 15 2788
[33] Fang J H, Liao Y P, Ding N and Wang P 2006 Chin. Phys. 15 2792
[34] Xie J F, Gang T Q and Mei F X 2008 Chin. Phys. B 17 3175
[35] Frederico G S F and Torres D F M 2007 J. Math. Anal. Appl. 334 834
[36] Frederico G S F and Torres D F M 2010 Appl. Math. Comput. 217 1023
[37] Frederico G S F and Torres D F M 2008 Int. Math. Forum 3 479
[38] Frederico G S F and Torres D F M 2008 Nonlinear Dyn. 53 215
[39] Malinowska A B 2012 Appl. Math. Lett. 25 1941
[40] Atanacković T M, Konjik S, Pilipović S and Simić S 2009 Nonlinear Anal. 71 1504
[41] Zhou S, Fu H and Fu J L 2011 Sci. China: Phys. Mech. Astron. 54 1847
[42] Cresson J 2007 J. Math. Phys. 48 033504
[43] El-Nabulsi A R 2005 Fizika A 14 289
[44] El-Nabulsi A R 2011 Appl. Math. Comput. 217 9492
[45] El-Nabulsi A R 2011 Appl. Math. Lett. 24 1647
[46] Frederico G S F and Torres D F M 2006 Int. J. Appl. Math. 19 97
[47] Frederico G S F and Torres D F M 2007 Int. J. Ecol. Econ. Stat. 9 74
[48] Zhang Y and Zhou Y 2013 Nonlinear Dyn. 73 783
[49] Zhang Y 2013 Acta Phys. Sin. 62 164501 (in Chinese)
[50] Long Z X and Zhang Y 2014 Acta Mech. 225 77
[51] Lao D Z 2009 Fundamentals of the Calculus of Variations (Beijing: National Defense Industry Press) (in Chinese)
[1] Factors influencing electromagnetic scattering from the dielectric periodic surface
Yinyu Wei(韦尹煜), Zhensen Wu(吴振森), Haiying Li(李海英), Jiaji Wu(吴家骥), Tan Qu(屈檀). Chin. Phys. B, 2019, 28(7): 074101.
[2] Experimentally testing Hardy's theorem on nonlocality with entangled mixed states
Dai-He Fan(樊代和), Mao-Chun Dai(戴茂春), Wei-Jie Guo(郭伟杰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2017, 26(4): 040302.
[3] A new piecewise linear Chen system of fractional-order: Numerical approximation of stable attractors
Marius-F. Danca, M. A. Aziz-Alaoui, Michael Small. Chin. Phys. B, 2015, 24(6): 060507.
[4] Energy dependence on the electric activities of a neuron
Song Xin-Lin (宋欣林), Jin Wu-Yin (靳伍银), Ma Jun (马军). Chin. Phys. B, 2015, 24(12): 128710.
[5] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[6] Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative
Rajneesh Kumar, Vandana Gupta. Chin. Phys. B, 2013, 22(7): 074601.
[7] Cluster synchronization in a network of non-identical dynamic systems
Wu Jian-She(吴建设), Jiao Li-Cheng(焦李成), and Chen Guan-Rong(陈关荣). Chin. Phys. B, 2011, 20(6): 060503.
[8] The discrete variational principle and the first integrals of Birkhoff systems
Zhang Hong-Bin(张宏彬), Chen Li-Qun(陈立群), Gu Shu-Long(顾书龙), and Liu Chuan-Zhang(柳传长). Chin. Phys. B, 2007, 16(3): 582-587.
[9] The discrete variational principle in Hamiltonian formalism and first integrals
Zhang Hong-Bin (张宏彬), Chen Li-Qun (陈立群), Liu Rong-Wan (刘荣万). Chin. Phys. B, 2005, 14(6): 1063-1068.
[10] Discrete variational principle and the first integrals of the conservative holonomic systems in event space
Zhang Hong-Bin (张宏彬), Chen Li-Qun (陈礼群), Liu Rong-Wan (刘荣万). Chin. Phys. B, 2005, 14(5): 888-892.
[11] First integrals of the discrete nonconservative and nonholonomic systems
Zhang Hong-Bin (张宏彬), Chen Li-Qun (陈立群), Liu Rong-Wan (刘荣万). Chin. Phys. B, 2005, 14(2): 238-243.
[12] Noether's theorem of a rotational relativistic variable mass system
Fang Jian-Hui (方建会), Zhao Song-Qing (赵嵩卿). Chin. Phys. B, 2002, 11(5): 445-449.
[13] NOETHER'S THEOREM OF NONHOLONOMIC SYSTEMS OF NON-CHETAEV'S TYPE WITH UNILATERAL CONSTRAINTS
Li Yuan-cheng (李元成), Zhang Yi (张毅), Liang Jing-hui (梁景辉), Mei Feng-xiang (梅凤翔). Chin. Phys. B, 2001, 10(5): 376-379.
No Suggested Reading articles found!