Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 087414    DOI: 10.1088/1674-1056/22/8/087414
Special Issue: TOPICAL REVIEW — Iron-based high temperature superconductors
TOPICAL REVIEW—Iron-based high temperature superconductors Prev   Next  

Review of nuclear magnetic resonance studies on iron-based superconductors

Ma Long (马龙), Yu Wei-Qiang (于伟强)
Department of Physics, Renmin University of China, Beijing 100872, China
Abstract  The newly discovered iron-based superconductors have triggered renewed enormous research interest in the condensed matter physics community. Nuclear magnetic resonance (NMR) is a low-energy local probe for studying strongly correlated electrons, and particularly important for high-TC superconductors. In this paper, we review NMR studies on the structural transition, antiferromagnetic order, spin fluctuations, and superconducting properties of several iron-based high-TC superconductors, including LaFeAsO1-xFx, LaFeAsO1-x, BaFe2As2, Ba1-xKxFe2As2, Ca0.23Na0.67Fe2As2, BaFe2(As1-xPx)2, Ba(Fe1-xRux)2As2, Ba(Fe1-xCox)2As2, Li1+xFeAs, LiFe1-xCoxAs, NaFeAs, NaFe1-xCoxAs, KyFe2-xSe2, and (Tl,Rb)yFe2-xSe2.
Keywords:  iron-based superconductors      nuclear magnetic resonance (NMR)      spin fluctuation      superconductivity  
Received:  07 May 2013      Revised:  23 June 2013      Accepted manuscript online: 
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.25.nj (Nuclear magnetic resonance)  
  76.60.-k (Nuclear magnetic resonance and relaxation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074304 and 11222433) and the National Basic Research Program of China (Grant Nos. 2010CB923004 and 2011CBA00112).
Corresponding Authors:  Yu Wei-Qiang     E-mail:  wqyu_phy@ruc.edu.cn

Cite this article: 

Ma Long (马龙), Yu Wei-Qiang (于伟强) Review of nuclear magnetic resonance studies on iron-based superconductors 2013 Chin. Phys. B 22 087414

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 Nature 453 761
[3] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[4] Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L and Wang N L 2008 Phys. Rev. Lett. 100 247002
[5] Rotter M, Pangerl M, Tegel M and Johrendt D 2008 Angew. Chem. Int. Ed. 47 7949
[6] Wang A F, Luo X G, Yan Y J, Ying J J, Xiang Z J, Ye G J, Cheng P, Li Z Y, Hu W J and Chen X H 2012 Phys. Rev. B 85 224521
[7] Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T and Takano Y 2009 J. Phys. Soc. Jpn. 78 074712
[8] Slichter C P 1996 Principles of Magnetic Resonance, 3rd enlarged and update edition (Berlin: Springer-Verlag)
[9] Abragam A 1978 The Principles of Nuclear Magnetism (Oxford: Oxford University Press)
[10] Walstedt R E 2008 The NMR Probe of High-TC Materials (Berlin: Springer)
[11] Kawabata A, Lee S C, Moyoshi T, Kobayashi Y and Sato M 2008 J. Phys. Soc. Jpn. 77 103704
[12] Terasaki N, Mukuda H, Yashima M, Kitaoka Y, Miyazawa K, Shirage P M, Kito H, Eisaki H and Iyo A 2009 J. Phys. Soc. Jpn. 78 013701
[13] Oka T, Li Z, Kawasaki S, Chen G F, Wang N L and Zheng G Q 2012 Phys. Rev. Lett. 108 047001
[14] Fukazawa H, Yamada Y, Kondo K, Saito T, Kohori Y, Kuga K, Matsumoto Y, Nakatsuji S, Kito H, Shirage P M, Kihou K, Takeshita N, Lee C H, Iyo A and Eisaki H 2009 J. Phys. Soc. Jpn. 78 083712
[15] Dong J K, Zhou S Y, Guan T Y, Zhang H, Dai Y F, Qiu X, Wang X F, He Y, Chen X H and Li S Y 2010 Phys. Rev. Lett. 104 087005
[16] Nakai Y, Iye T, Kitagawa S, Ishida K, Kasahara S, Shibauchi T, Matsuda Y and Terashima T 2010 Phys. Rev. B 81 020503
[17] Hashimoto K, Yamashita M, Kasahara S, Senshu Y, Nakata N, Tonegawa S, Ikada K, Serafin A, Carrington A, Terashima T, Ikeda H, Shibauchi T and Matsuda Y 2010 Phys. Rev. B 81 220501
[18] Zhang Y, Ye Z R, Ge Q Q, Chen F, Jiang J, Xu M, Xie B P and Feng D L 2012 Nat. Phys. 8 371
[19] Yu W Q, Ma L, He J B, Wang D M, Xia T L, Chen G F and Bao W 2011 Phys. Rev. Lett. 106 197001
[20] Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M and Chen X L 2010 Phys. Rev. B 82 180520
[21] Zhang Y, Yang L X, Xu M, Ye Z R, Chen F, He C, Xu H C, Jiang J, Xie B P, Ying J J, Wang X F, Chen X H, Hu J P, Matsunami M, Kimura S and Feng D L 2011 Nat. Mater. 10 273
[22] Ma L, Ji G F, Zhang J, He J B, Wang D M, Chen G F, Bao W and Yu W Q 2011 Phys. Rev. B 83 174510
[23] Parker D, Dolgov O V, Korshunov M M, Golubov A A and Mazin I I 2008 Phys. Rev. B 78 134524
[24] Chubukov A V, Efremov D V and Eremin I 2008 Phys. Rev. B 78 134512
[25] Parish M M, Hu J P and Andrei Bernevig B 2008 Phys. Rev. B 78 144514
[26] Bang Y, Choi H Y and Won H 2009 Phys. Rev. B 79 054529
[27] Kitagawa K, Katayama N, Ohgushi K, Yoshida M and Takigawa M 2008 J. Phys. Soc. Jpn. 77 114709
[28] Ma L, Chen G F, Yao D X, Zhang J, Zhang S, Xia T L and Yu W Q 2011 Phys. Rev. B 83 132501
[29] Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G and Chen X H 2008 Phys. Rev. Lett. 101 257003
[30] Kitagawa K, Mezaki Y, Matsubayashi K, Uwatoko Y and Takigawa M 2011 J. Phys. Soc. Jpn. 80 033705
[31] Iye T, Nakai Y, Kitagawa S, Ishida K, Kasahara S, Shibauchi T, Matsuda Y and Terashima T 2012 J. Phys. Soc. Jpn. 81 033701
[32] Thaler A, Ni N, Kracher A, Yan J, Bud'ko S and Canfield P 2010 Phys. Rev. B 82 014534
[33] Ma L, Ji G F, Dai J, Lu X R, Eom M J, Kim J S, Normand B and Yu W Q 2012 Phys. Rev. Lett. 109 197002
[34] Li Z, Zhou R, Liu Y, Sun D L, Yang J, Lin C T and Zheng G Q 2012 Phys. Rev. B 86 180501
[35] Kitagawa S, Nakai Y, Iye T, Ishida K, Kamihara Y, Hirano M and Hosono H 2010 Phys. Rev. B 81 212502
[36] Ning F L, Ahilan K, Imai T, Sefat A S, Mcguire M A, Sales B C, Mandrus D, Cheng P, Shen B and Wen H H 2010 Phys. Rev. Lett. 104 037001
[37] Imai T, Ahilan K, Ning F L, Mcqueen T M and Cava R J 2009 Phys. Rev. Lett. 102 177005
[38] Nakai Y, Iye T, Kitagawa S, Ishida K, Ikeda H, Kasahara S, Shishido H, Shibauchi T, Matsuda Y and Terashima T 2010 Phys. Rev. Lett. 105 107003
[39] Zhang S W, Ma L, Hou Y D, Zhang J, Xia T L, Chen G F, Hu J P, Luke G M and Yu W Q 2010 Phys. Rev. B 81 012503
[40] Yashima M, Nishimura H, Mukuda H, Kitaoka Y, Miyazawa K, Shirage P M, Kihou K, Kito H, Eisaki H and Iyo A 2009 J. Phys. Soc. Jpn. 78 103702
[41] Li Z, Sun D L, Lin C T, Su Y H, Hu J P and Zheng G Q 2011 Phys. Rev. B 83 140506
[42] Lee C H, Kihou K, Kawano-Furukawa H, Saito T, Iyo A, Eisaki H, Fukazawa H, Kohori Y, Suzuki K, Usui H, Kuroki K and Yamada K 2011 Phys. Rev. Lett. 106 067003
[43] Ma L, Zhang J S, Wang D M, He J B, Xia T L, Chen G F and Yu W Q 2012 Chin. Phys. Lett. 29 067402
[44] Baek S H, Curro N J, Klimczuk T, Bauer E D, Ronning F and Thompson J D 2009 Phys. Rev. B 79 052504
[45] Ma L, Zhang J, Chen G F and Yu W Q 2010 Phys. Rev. B 82 180501
[46] Wang M, Wang M Y, Miao H, Carr S V, Abernathy D L, Stone M B, Wang X C, Xing L Y, Jin C Q, Zhang X T, Hu J P, Xiang T, Ding H and Dai P C 2012 Phys. Rev. B 86 144511
[47] Ye Z R, Zhang Y, Xu M, Ge Q Q, Fan Q, Chen F, Jiang J, Wang P S, Dai J, Yu W, Xie B P and Feng D L 2013 arXiv: 1303.0682v1
[48] Wu G, Chen H, Wu T, Xie Y L, Yan Y J, Liu R H, Wang X F, Ying J J and Chen X H 2008 J. Phys.: Condens. Matter 20 422201
[49] Yan J Q, Kreyssig A, Nandi S, Ni N, Bud'ko S L, Kracher A, Mcqueeney R J, Mccallum R W, Lograsso T A, Goldman A I and Canfield P C 2008 Phys. Rev. B 78 024516
[50] Klingeler R, Leps N, Hellmann I, Popa A, Stockert U, Hess C, Kataev V, Grafe H J, Hammerath F, Lang G, Wurmehl S, Behr G, Hamagea L, Singh S and Buchner B 2010 Phys. Rev. B 81 024506
[51] Ma L, Ji G F, Dai J, He J B, Wang D M, Chen G F, Normand B and Yu W Q 2011 Phys. Rev. B 84 220505
[52] Normand B and Rice T M 1997 Phys. Rev. B 56 8760
[53] Nakai Y, Ishida K, Kmihara Y, Hirano M and Hosono H 2008 J. Phys. Soc. Jpn. 77 073701
[54] Ahilan K, Ning F L, Imai T, Sefat A S, Jin R, Mcguire M A, Sales B C and Mandrus D 2008 Phys. Rev. B 78 100501
[55] Jeglic P, Potocnik A, Klanjsek M, Bobnar M, Jagodic M, Koch K, Rosner H, Margadonna S, Lü B, Guloy A M and Arcon D 2010 Phys. Rev. B 81 140511
[56] Li Z, Ooe Y, Wang X C, Liu Q Q, Jin C Q, Ichioka M and Zheng G Q 2010 J. Phys. Soc. Jpn. 79 083702
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[4] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[5] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[6] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[7] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[8] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[9] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[10] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[11] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[12] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[13] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[14] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[15] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
No Suggested Reading articles found!