Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 087303    DOI: 10.1088/1674-1056/22/8/087303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin gapless armchair graphene nanoribbons under magnetic field and uniaxial strain

Hou Hai-Ping (侯海平)a b, Xie Yue-E (谢月娥)a b, Chen Yuan-Ping (陈元平)a b, Ouyang Tao (欧阳滔)a b, Ge Qing-Xia (葛青霞)a b, Zhong Jian-Xin (钟建新)a b
a Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, China;
b Laboratory for Quantum Engineering and Micro-Nano Energy Technology and Faculty of Materials and Optoelectronic Physics, Xiangtan University, Xiangtan 411105, China
Abstract  Using Green's function method, we investigate the spin transport properties of armchair graphene nanoribbons (AGNRs) under magnetic field and uniaxial strain. Our results show that it is very difficult to transform narrow AGNRs directly from semiconductor to spin gapless semiconductors (SGS) by applying magnetic fields. However, as a uniaxial strain is exerted on the nanoribbons, the AGNRs can transform to SGS by a small magnetic field. The combination mode between magnetic field and uniaxial strain displays a nonmonotonic arch-pattern relationship. In addition, we find that the combination mode is associated with the widths of nanoribbons, which exhibits group behaviors.
Keywords:  graphene      spin gapless      spin transport      tight-binding  
Received:  05 November 2012      Revised:  29 January 2013      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  85.35.-p (Nanoelectronic devices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921303), the National Natural Science Foundation of China (Grant Nos. 51172191, 11074211, 11074213, 51006086, and 51176161), and the Joint Funds of the Natural Science Foundation of Hunan Province, China (Grant No. 10JJ9001).
Corresponding Authors:  Xie Yue-E, Zhong Jian-Xin     E-mail:  xieyech@xtu.edu.cn; jxzhong@xtu.edu.cn

Cite this article: 

Hou Hai-Ping (侯海平), Xie Yue-E (谢月娥), Chen Yuan-Ping (陈元平), Ouyang Tao (欧阳滔), Ge Qing-Xia (葛青霞), Zhong Jian-Xin (钟建新) Spin gapless armchair graphene nanoribbons under magnetic field and uniaxial strain 2013 Chin. Phys. B 22 087303

[1] Wang X L 2008 Phys. Rev. Lett. 100 156404
[2] Wang X L, Peleckis G, Zhang C, Kimura H and Dou S X 2009 Adv. Mater. 21 2196
[3] Li Y F, Zhou Z, Shen P W and Chen Z F 2009 ACS Nano 3 1952
[4] Pan Y and Yang Z 2010 Phys. Rev. B 82 195308
[5] Pan Y and Yang Z 2011 Chem. Phys. Lett. 518 104
[6] Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229
[7] Wang X, Ouyang Y, Li X, Wang H, Guo J and Dai H 2008 Phys. Rev. Lett. 100 206803
[8] Min H, Hill E J, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
[9] Yao Y, Ye F, Qi L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401(R)
[10] Huertas-Hernando D, Guinea F and Brataas A 2006 Phys. Rev. B 74 155426
[11] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and Wees B J V 2007 Nature 448 571
[12] Okada S 2008 Phys. Rev. B 77 041408(R)
[13] Wassmann T, Seitsonen A P, Saitta A M, Lazzeri M and Mauri F 2008 Phys. Rev. Lett. 101 096402
[14] Myoung N and Ihm G 2011 J. Appl. Phys. 109 053716
[15] Lee Y L, Kim S, Park C, Ihm J and Son Y W 2010 ACS Nano 4 1345
[16] Fujita T, Jalil M B A and Tan S G 2010 Appl. Phys. Lett. 97 043508
[17] Soodchomshom B and Chantngarm P 2011 J. Supercond. Nov. Magn. 24 1885
[18] Niu Z P 2012 J. Appl. Phys. 111 103712
[19] Zhai F, Zhao X F, Chang K and Xu H Q 2010 Phys. Rev. B 82 115442
[20] Soodchomshom B 2011 Physica B 406 614
[21] Chen F, ChenY P, Zhang M and Zhong J X 2010 Chin. Phys. B 19 086105
[22] Yu X X, Xie Y E, Ou Y T and Chen Y P 2012 Chin. Phys. B 21 107202
[23] Zhen H Q, Jian W, Wei Y D and Guo H 2008 Phys. Rev. Lett. 101 016804
[24] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 48216803
[25] Sun L, Li Q X, Ren H, Su H B, Shi Q W and Yang J L 2008 J. Chem. Phys. 129 074704
[26] Chen Y P, Xie Y E, Sun L Z and Zhong J X 2008 Appl. Phys. Lett. 93 092104
[27] Chen Y P, Xie Y E and Yan X H 2008 J. Appl. Phys. 103 063711
[28] Gui G, Li J and Zhong J X 2008 Phys. Rev. B 78 075435
[29] Li J, Gui G and Zhong J X 2008 J. Appl. Phys. 104 094311
[30] Li J, Sun L Z and Zhong J X 2010 Chin. Phys. Lett. 27 077101
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[9] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[10] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!