Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077305    DOI: 10.1088/1674-1056/22/7/077305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electron mobility limited by surface and interface roughness scatterings in AlxGa1-xN/GaN quantum wells

Wang Jian-Xia (王建霞), Yang Shao-Yan (杨少延), Wang Jun (王俊), Liu Gui-Peng (刘贵鹏), Li Zhi-Wei (李志伟), Li Hui-Jie (李辉杰), Jin Dong-Dong (金东东), Liu Xiang-Lin (刘祥林), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国)
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The electron mobility limited by the interface and surface roughness scatterings of the two-dimensional electron gas in AlxGa1-xN/GaN quantum wells is studied. The newly proposed surface roughness scattering in the AlGaN/GaN quantum wells becomes effective when an electric field exists in the AlxGa1-xN barrier. For the AlGaN/GaN potential well, the ground subband energy is governed by the spontaneous and the piezoelectric polarization fields which are determined by the barrier and the well thicknesses. The thickness fluctuation of the AlGaN barrier and the GaN well due to the roughnesses cause the local fluctuation of the ground subband energy, which will reduce the 2DEG mobility.
Keywords:  AlGaN/GaN quantum wells      surface roughness scattering      polarization fields      mobility  
Received:  16 January 2013      Revised:  27 February 2013      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.21.Fg (Quantum wells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91233111, 11275228, 60976008, 61006004, 61076001, and 10979507), the National Basic Research Program of China (Grant No. A000091109-05), and the National High Technology Research and Development Program of China (Grant No. 2011AA03A101).
Corresponding Authors:  Yang Shao-Yan, Wang Jian-Xia     E-mail:  sh-yyang@semi.ac.cn; jxwang2009@semi.ac.cn

Cite this article: 

Wang Jian-Xia (王建霞), Yang Shao-Yan (杨少延), Wang Jun (王俊), Liu Gui-Peng (刘贵鹏), Li Zhi-Wei (李志伟), Li Hui-Jie (李辉杰), Jin Dong-Dong (金东东), Liu Xiang-Lin (刘祥林), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国) Electron mobility limited by surface and interface roughness scatterings in AlxGa1-xN/GaN quantum wells 2013 Chin. Phys. B 22 077305

[1] Neumayer D A and Ekerdt J G 1996 Chem. Mater. 8 9
[2] Suzuki N and Iizuka N 1999 Jpn. J. Appl. Phys. Suppl. 38 L363
[3] Nicolay S, Carlin J F, Feltin E, Butte R, Mosca M, Grandjean N, Ilegems M, Tchernycheva M, Nevou L and Julien F H 2005 Appl. Phys. Lett. 87 111106
[4] Shen X Q, Furuta K, Nakamura N, Matsuhata H, Shimizu M and Okumura H 2007 J. Crys. Growth 301 404
[5] Kishino K, Kikuchi A, Kanazava H and Tachibana T 2002 Appl.Phys. Lett. 81 1234
[6] Grandjean N and Massies J 1998 Appl. Phys. Lett. 73 31
[7] Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024
[8] Bernardini F and Fiorentini V 2001 Phys. Rev. B 64 085207
[9] Suzuki N, Iizuka N and Kaneko K 2002 Jpn. J. Appl. Phys. 42 132
[10] Sakaki H, Noda T, HIrakawa K, Tanaka M and Matsusue T 1987 Appl. Phys. Lett. 51 1934
[11] Antoszewski J, Gracey M and Dell M 2000 J. Appl. Phys. 87 3900
[12] Tokura Y, Saku T, Tarucha S and Horikoshi Y 1992 Phys. Rev. B 46 15558
[13] Thongnum A, Pinsook U and Sa-yakanit V 2009 J. Phys. D: Appl. Phys. 42 195101
[14] Sahu T and Shore K A 2009 Semicond. Sci. Technol. 24 095021
[15] Liu B, Lu Y W, Jin G R, Zhao Y, Wang X L, Zhu Q S and Wang Z G 2010 Appl. Phys. Lett. 97 262111
[16] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N J, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R and Mitchell A 2000 J. Appl. Phys. 87 334
[17] Leroux M, Grandjean N, Laugt M and Massies J 1998 Phys. Rev. B 58 R13371
[18] Jovananovic V, Indjin D, Ikonic Z, Milanovic V and Radovanovic J 2002 Solid State Commun. 121 619
[19] Leroux M, Grandjean N and Massies J 1999 Phys. Rev. B 60 1496
[20] Basu P K 1991 Phys. Rev. B 44 8798
[1] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[2] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[3] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[4] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[5] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[6] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[7] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[8] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[9] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[10] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[11] Majorana zero modes, unconventional real-complex transition, and mobility edges in a one-dimensional non-Hermitian quasi-periodic lattice
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2022, 31(1): 017401.
[12] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[13] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[14] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[15] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
No Suggested Reading articles found!