Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074303    DOI: 10.1088/1674-1056/22/7/074303
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of size and arrangement of virtual transducer on photoacoustic tomography

Wang Shao-Hua (王少华), Tao Chao (陶超), Liu Xiao-Jun (刘晓峻)
Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093, China
Abstract  In this paper, we investigate the effects of the relative size and arrangement of the virtual transducer on the image quality in limited-view photoacoustic tomography. A virtual transducer refers to the acoustic scatterers used to reflect photoacoustic waves and improve the images reconstructed from incomplete PA signal. Size and spatial arrangement determine the performance of the virtual transducer. In this study, the scatterers utilized as virtual transducers are arranged in different manners, such as on a straight line or on an arc line. We find that virtual transducers with a big distributing angle can provide more significant image improvement than with a small distributing angle, which is similar to the true transducers. We also change the size of virtual transducer and study its influence on image quality. It is found that the bigger scatterers provide better images than the smaller ones. Especially, when the size of scatterers is reduced to the wavelength of photoacoustic wave, the image quality observably decreases, owing to the strong diffraction effect. Thus, it is suggested that the size of the acoustical scatterers should be much larger than the photoacoustic wavelength. The simulations are conducted, and the results could be helpful for the application and further study of virtual transducer theory in limited-view photoacoustic tomography.
Keywords:  photoacoustic tomography      limited-view      virtual transducer      scattering  
Received:  08 October 2012      Revised:  19 November 2012      Accepted manuscript online: 
PACS:  43.35.Ud (Thermoacoustics, high temperature acoustics, photoacoustic effect)  
  43.60.Pt (Signal processing techniques for acoustic inverse problems)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11274167, 11274171, and 11074124), and the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201208).
Corresponding Authors:  Tao Chao, Liu Xiao-Jun     E-mail:  taochao@nju.edu.cn;liuxiaojun@nju.edu.cn

Cite this article: 

Wang Shao-Hua (王少华), Tao Chao (陶超), Liu Xiao-Jun (刘晓峻) Effects of size and arrangement of virtual transducer on photoacoustic tomography 2013 Chin. Phys. B 22 074303

[1] Sun T and Diebold G J 1992 Nature 355 806
[2] Xu M H and Wang L H V 2006 Rev. Sci. Instrum. 77 041101
[3] Kong F, Chen Y C, Lloyd H O, Silverman R H, Kim H H, Cannata J M and Shung K K 2009 Appl. Phys. Lett. 94 033902
[4] Wang X D, Pang Y J, Ku G, Xie X Y, Stoica G and Wang L H V 2003 Nat. Biotechnol. 21 803
[5] Zhang H F, Maslov K, Stoica G and Wang L H V 2006 Nat. Biotechnol. 24 848
[6] Wang L H V and Hu S 2012 Science 335 1458
[7] Oladipupo S S, Hu S, Santeford A C, Yao J J, Kovalski J R, Shohet R V, Maslov K, Wang L V and Arbeit J M 2011 Blood 117 4142
[8] Xiang L Z, Xing D, Gu H M, Yang D W, Yang S H and Zeng L M 2007 Acta Phys. Sin. 56 3911 (in Chinese)
[9] Xu M H, Xu Y and Wang L H V 2003 IEEE Trans. Biomed. Eng. 50 1086
[10] Yang S H and Yin G Z 2009 Acta Phys. Sin. 58 4760 (in Chinese)
[11] Manohar S, Kharine A, van Hespen J C G, Steenbergen W and van Leeuwen T G 2005 Phys. Med. Biol. 50 2543
[12] Andreev V G, Karabutov A A and Oraevsky A A 2003 IEEE. T. Ultrason. Ferr. 50 1383
[13] Zhang H F, Maslov K, Sivaramakrishnan M, Stoica G and Wang L H V 2007 Appl. Phys. Lett. 90 053901
[14] Li M L, Oh J T, Xie X Y, Ku G, Wang W, Li C, Lungu G, Stoica G and Wang L V 2008 Proc. IEEE 96 481
[15] Li C H, Aguirre A, Gamelin J, Maurudis A, Zhu Q and Wang L V 2010 J. Biomed. Opt. 15 010509
[16] Xu M H and Wang L H V 2002 IEEE Trans. Med. Imaging 21 814
[17] Wu D, Tao C, Liu X J and Wang X D 2012 Chin. Phys. B 21 014301
[18] Tao C and Liu X J 2010 Opt. Express 18 2760
[19] Wu D, Tao C and Liu X J 2010 Acta Phys. Sin. 59 5845 (in Chinese)
[20] Xu Y, Wang L V, Ambartsoumian G and Kuchment P 2004 Med. Phys. 31 724
[21] Paltauf G, Nuster R, Haltmeier M and Burgholzer P 2007 Inverse Probl. 23 S81
[22] Wu D, Wang X, Tao C and Liu X J 2011 Appl. Phys. Lett. 99 244102
[23] Xu M H and Wang L H V 2005 Phys. Rev. E 71 016706
[24] Wu D, Tao C and Liu X J 2011 J. Appl. Phys. 109 084702
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[4] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[5] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[6] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[7] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[8] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[9] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[10] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[11] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[12] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[13] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[14] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[15] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
No Suggested Reading articles found!