Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074601    DOI: 10.1088/1674-1056/22/7/074601
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative

Rajneesh Kumar, Vandana Gupta
Department of Mathematics, Kurukshetra University Kurukshetra-136119, Haryana, India
Abstract  In this work, a theory of thermoelasticity with diffusion is taken into consideration by using the methodology of fractional calculus. The governing equations for particle motion in a homogeneous anisotropic fractional order generalized thermoelastic diffusive medium are presented. Uniqueness and reciprocity theorems are proved. The plane wave propagation in the homogeneous transversely isotropic thermoelastic diffusive medium with fractional order derivative is studied. For the two-dimensional problem, there exist a quasi-longitudinal wave, a quasi-transverse wave, a quasi-mass diffusion wave, and a quasi-thermal wave. From the obtained results, the different characteristics of waves, like phase velocity, attenuation coefficient, specific loss, and penetration depth, are computed numerically and presented graphically. Some special cases are also discussed.
Keywords:  thermoelastic diffusion      fractional calculus      uniqueness theorem      reciprocity theorem  
Received:  13 December 2012      Revised:  18 January 2013      Accepted manuscript online: 
PACS:  46.70.-p (Application of continuum mechanics to structures)  
  46.15.-x (Computational methods in continuum mechanics)  
  46.05.+b (General theory of continuum mechanics of solids)  
Fund: Project supported by the Council of Scientific and Industrial Research (CSIR), India.
Corresponding Authors:  Rajneesh Kumar     E-mail:  rajneesh_kuk@rediffmail.com

Cite this article: 

Rajneesh Kumar, Vandana Gupta Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative 2013 Chin. Phys. B 22 074601

[1] Nowacki W 1974 Bulletin of Polish Academy of Sciences Series, Science and Technology 22 55
[2] Nowacki W 1974 Bulletin of Polish Academy of Sciences Series, Science and Technology 22 129
[3] Nowacki W 1974 Bulletin of Polish Academy of Sciences Series, Science and Technology 22 275
[4] Nowacki W 1974 Proc. Vib. Prob. 15 105
[5] Sherief H H and Saleh H 2005 Int. J. of Solids and Struct 42 4484
[6] Kumar R and Kansal T 2008 Int. J. Solids and Struct 45 5890
[7] Kumar R and Chawla V 2011 Int. Commun. Heat Mass Transfer 38 456
[8] Povstenko Y Z 2005 J. Therm. Stress 28 83
[9] Povstenko Y Z 2009 J. Mathematical Stresses 162 296
[10] Youssef H M 2010 J. Heat Transfer 132 1
[11] Jiang X Y and Xu M Y 2010 Physica A 389 3368
[12] Povstenko Y Z 2010 Mech. Res. Commun. 37 436
[13] Ezzat M A 2011 Physica B 406 30
[14] Jumarie G 2010 Comput. Math. Appl. 59 1142
[15] Ezzat M A 2011b Applied Mathematical Modelling 35 4965
[16] Povstenko Y Z 2011 J. Therm. Stress 34 97
[17] Biswas R K and Sen S 2011 Journal of Vibration and Control 17 1034
[18] Jiang X Y and Qi H T 2012 J. Phys. A: Math. Theor. 45 485101
[19] Iesan D 1986 Acta Mechanica 60 67
[20] Sherief H H, Saleh H and Hamza F 2004 International Journal of Engineering Science 42 591
[21] Aouadi M 2007 J. Therm. Stress 30 665
[22] Aouadi M 2008 J. Therm. Stress 31 270
[23] Sherief H H, El-Said A and Abd El Latief A 2010 Int. J. Solids and Struct. 47 269
[24] El-Karmany A S and Ezzat M A 2011 J. Therm. Stress 34 264
[25] Catteneo C 1958 C. R. Acad. Sci. 247 431
[26] Poon Y M, Wei E B and Gu G 2010 Chin. Phys. B 19 096201
[27] Sharma M D 2010 Acta Mechanica 209 275
[28] Abbas I A, Kumar R and Chawla V 2012 Chin. Phys. B 21 084601
[29] Abbas I A and Othman M I A 2012 Chin. Phys. B 21 014601
[30] Lotfy K 2012 Chin. Phys. B 21 064214
[31] Lotfy K and Othman M I A 2011 Chin. Phys. B. 20 074601
[32] Miller K S and Ross B 1993 An Introduction to the Fractional Integrals and Derivatives, Theory and Applications (New York: John Wiley and Sons)
[33] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[34] Kuang Z B 2010 Acta Mech. 214 275
[35] Biot M A 1956 J. Appl. Phys. 27 240
[36] Aouadi M 2007 J. Therm. Stress 30 665
[37] Churchill R V 1972 Operational Mathematics (3rd edn.) (New York: McGraw-Hill)
[38] Slaughter W S 2002 The Linearised Theory of Elasticity (1st edn.) (New York: Birkhauser Boston)
[39] Kolsky H 1963 Stress Waves in Solids (Oxford: Clarendon Press)
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[3] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[4] Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection
Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya. Chin. Phys. B, 2022, 31(1): 018401.
[5] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[6] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[7] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[8] Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓). Chin. Phys. B, 2017, 26(4): 040202.
[9] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[10] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
[11] The fractional coupled KdV equations:Exact solutions and white noise functional approach
Hossam A. Ghany, A. S. Okb El Bab, A. M. Zabel, Abd-Allah Hyder. Chin. Phys. B, 2013, 22(8): 080501.
[12] Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus
Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎). Chin. Phys. B, 2013, 22(3): 030506.
[13] Response of thermal source in a transversely isotropic thermoelastic half-space with mass diffusion by finite element method
Ibrahim A. Abbas, Rajneesh Kumar, Vijay Chawla. Chin. Phys. B, 2012, 21(8): 084601.
[14] A new generalized fractional Dirac soliton hierarchy and its fractional Hamiltonian structure
Wei Han-Yu (魏含玉), Xia Tie-Cheng (夏铁成 ). Chin. Phys. B, 2012, 21(11): 110203.
[15] Exact solutions for nonlinear partial fractional differential equations
Khaled A. Gepreel, Saleh Omran. Chin. Phys. B, 2012, 21(11): 110204.
No Suggested Reading articles found!