|
|
Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases |
Jia-Ying Yang(杨家营)1, Xu Liu(刘旭)1, Ji-Hong Qin(秦吉红)1,2,†, and Huai-Ming Guo(郭怀明)3 |
1 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China; 2 Institute of Theoretical Physics, University of Science and Technology Beijing, Beijing 100083, China; 3 Department of Physics, Beihang University, Beijing 100191, China |
|
|
Abstract Based on the mean-field theory, we investigate the thermodynamic properties of the two-dimensional (2D) charged spin-1/2 Fermi gas. Landé factor g is introduced to measure the strength of the paramagnetic effect. There is a competition between diamagnetism and paramagnetism in the system. The larger the Landé factor, the smaller the entropy and specific heat. Diamagnetism tends to increase the entropy, while paramagnetism leads to the decrease of the entropy. We find that there exists a critical value of Landé factor for the transition point due to the competition. The entropy of the system increases with the magnetic field when g < 0.58. With the growth of paramagnetism, when g > 0.58, the entropy first decreases with the magnetic field, then reaches a minimum value, and finally increases again. Both the entropy and specific heat increase with the temperature, and no phase transition occurs. The specific heat tends to a constant value at the hightemperature limit, and it approaches to zero at very low temperatures, which have been proved by the analytical calculation.
|
Received: 28 December 2021
Accepted manuscript online: 24 January 2022
|
PACS:
|
05.30.-d
|
(Quantum statistical mechanics)
|
|
05.30.Fk
|
(Fermion systems and electron gas)
|
|
75.20.-g
|
(Diamagnetism, paramagnetism, and superparamagnetism)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774019) and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-BR-16-014A). |
Corresponding Authors:
Ji-Hong Qin
E-mail: jhqin@sas.ustb.edu.cn
|
Cite this article:
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明) Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases 2022 Chin. Phys. B 31 060504
|
[1] Regal C A, Ticknor C, Bohn J L and Jin D S 2003 Nature 424 47 [2] Xiong H W, Liu S J, Zhang W P and Zhan M S 2005 Phys. Rev. Lett. 95 120401 [3] Qin F and Chen J S 2009 Phys. Rev. A 79 043625 [4] Chen J S, Cheng C M, Li J R and Wang Y P 2007 Phys. Rev. A 76 033617 [5] Kinast J, Hemmer S L, Gehm M E, Turlapov A and Thomas J E 2004 Phys. Rev. Lett. 92 150402 [6] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag J H and Grimm R 2004 Phys. Rev. Lett. 92 203201 [7] Kinast J, Turlapov A, Thomas J E, Chen Q J, Stajic J and Levin K 2005 Science 307 1296 [8] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175 [9] Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H and Ketterle W 2005 Nature 435 1047 [10] Huang K and Yang C N 1957 Phys. Rev. 105 767 [11] Li H L, Ren J X, Wang W W, Yang B and Shen H J 2018 J. Stat. Mech.: Theory Exp. 2018 023106 [12] Kuzemsky A L 2015 Int. J. Mod. Phys. B 29 1530010 [13] Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403 [14] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Denschlag J H and Grimm R 2003 Science 302 2101 [15] Standen G B and Toms D J 1999 Phys. Rev. E 60 5275 [16] Men F D, Liu H and Zhu H Y 2008 Sci. China Ser. G 51 1072 [17] Qin J H, Jian X L and Gu Q 2012 J. Phys.: Condensed. Matter 24 366007 [18] Wang B B, Qin J H and Guo H M 2015 Eur. Phys. J. B 88 246 [19] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [20] Hohenberg P C 1967 Phys. Rev. 158 383 [21] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215 [22] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 [23] Dagotto E 1994 Rev. Mod. Phys. 66 763 [24] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [25] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [26] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001 [27] Randeria M, Duan J M and Shieh L Y 1989 Phys. Rev. Lett. 62 981 [28] Mulkerin B C, Hu H and Liu X J 2020 Phys. Rev. A 101 013605 [29] Mulkerin B C, Liu X J and Hu H 2020 Phys. Rev. A 102 013313 [30] Modugno G, Ferlaino F, Heidemann R, Roati G and Inguscio M 2003 Phys. Rev. A 68 011601 [31] Martiyanov K, Makhalov V and Turlapov A 2010 Phys. Rev. Lett. 105 030404 [32] Dyke P, Kuhnle E D, Whitlock S, Hu H, Mark M, Hoinka S, Lingham M, Hannaford P and Vale C J 2011 Phys. Rev. Lett. 106 105304 [33] Sommer A T, Cheuk L W, Ku M J H, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 108 045302 [34] Marsiglio F, Pieri P, Perali A, Palestini F and Strinati G C 2015 Phys. Rev. B 91 054509 [35] Klimin S N, Tempere J and Devreese J T 2012 New J. Phys. 14 103044 [36] Martiyanov K, Barmashova T, Makhalov V and Turlapov A 2016 Phys. Rev. A 93 063622 [37] Murthy P A, Boettcher I, Bayha L, Holzmann M, Kedar D, Neidig M, Ries M G, Wenz A N, Zürn G and Jochim S 2015 Phys. Rev. Lett. 115 010401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|