Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 060504    DOI: 10.1088/1674-1056/ac4e0b
GENERAL Prev   Next  

Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases

Jia-Ying Yang(杨家营)1, Xu Liu(刘旭)1, Ji-Hong Qin(秦吉红)1,2,†, and Huai-Ming Guo(郭怀明)3
1 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 Institute of Theoretical Physics, University of Science and Technology Beijing, Beijing 100083, China;
3 Department of Physics, Beihang University, Beijing 100191, China
Abstract  Based on the mean-field theory, we investigate the thermodynamic properties of the two-dimensional (2D) charged spin-1/2 Fermi gas. Landé factor g is introduced to measure the strength of the paramagnetic effect. There is a competition between diamagnetism and paramagnetism in the system. The larger the Landé factor, the smaller the entropy and specific heat. Diamagnetism tends to increase the entropy, while paramagnetism leads to the decrease of the entropy. We find that there exists a critical value of Landé factor for the transition point due to the competition. The entropy of the system increases with the magnetic field when g < 0.58. With the growth of paramagnetism, when g > 0.58, the entropy first decreases with the magnetic field, then reaches a minimum value, and finally increases again. Both the entropy and specific heat increase with the temperature, and no phase transition occurs. The specific heat tends to a constant value at the hightemperature limit, and it approaches to zero at very low temperatures, which have been proved by the analytical calculation.
Keywords:  Fermi gas      entropy      specific heat      Landé      factor  
Received:  28 December 2021      Accepted manuscript online:  24 January 2022
PACS:  05.30.-d (Quantum statistical mechanics)  
  05.30.Fk (Fermion systems and electron gas)  
  75.20.-g (Diamagnetism, paramagnetism, and superparamagnetism)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774019) and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-BR-16-014A).
Corresponding Authors:  Ji-Hong Qin     E-mail:  jhqin@sas.ustb.edu.cn

Cite this article: 

Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明) Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases 2022 Chin. Phys. B 31 060504

[1] Regal C A, Ticknor C, Bohn J L and Jin D S 2003 Nature 424 47
[2] Xiong H W, Liu S J, Zhang W P and Zhan M S 2005 Phys. Rev. Lett. 95 120401
[3] Qin F and Chen J S 2009 Phys. Rev. A 79 043625
[4] Chen J S, Cheng C M, Li J R and Wang Y P 2007 Phys. Rev. A 76 033617
[5] Kinast J, Hemmer S L, Gehm M E, Turlapov A and Thomas J E 2004 Phys. Rev. Lett. 92 150402
[6] Bartenstein M, Altmeyer A, Riedl S, Jochim S, Chin C, Denschlag J H and Grimm R 2004 Phys. Rev. Lett. 92 203201
[7] Kinast J, Turlapov A, Thomas J E, Chen Q J, Stajic J and Levin K 2005 Science 307 1296
[8] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[9] Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H and Ketterle W 2005 Nature 435 1047
[10] Huang K and Yang C N 1957 Phys. Rev. 105 767
[11] Li H L, Ren J X, Wang W W, Yang B and Shen H J 2018 J. Stat. Mech.: Theory Exp. 2018 023106
[12] Kuzemsky A L 2015 Int. J. Mod. Phys. B 29 1530010
[13] Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403
[14] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Denschlag J H and Grimm R 2003 Science 302 2101
[15] Standen G B and Toms D J 1999 Phys. Rev. E 60 5275
[16] Men F D, Liu H and Zhu H Y 2008 Sci. China Ser. G 51 1072
[17] Qin J H, Jian X L and Gu Q 2012 J. Phys.: Condensed. Matter 24 366007
[18] Wang B B, Qin J H and Guo H M 2015 Eur. Phys. J. B 88 246
[19] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[20] Hohenberg P C 1967 Phys. Rev. 158 383
[21] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
[22] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[23] Dagotto E 1994 Rev. Mod. Phys. 66 763
[24] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[25] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[26] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001
[27] Randeria M, Duan J M and Shieh L Y 1989 Phys. Rev. Lett. 62 981
[28] Mulkerin B C, Hu H and Liu X J 2020 Phys. Rev. A 101 013605
[29] Mulkerin B C, Liu X J and Hu H 2020 Phys. Rev. A 102 013313
[30] Modugno G, Ferlaino F, Heidemann R, Roati G and Inguscio M 2003 Phys. Rev. A 68 011601
[31] Martiyanov K, Makhalov V and Turlapov A 2010 Phys. Rev. Lett. 105 030404
[32] Dyke P, Kuhnle E D, Whitlock S, Hu H, Mark M, Hoinka S, Lingham M, Hannaford P and Vale C J 2011 Phys. Rev. Lett. 106 105304
[33] Sommer A T, Cheuk L W, Ku M J H, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 108 045302
[34] Marsiglio F, Pieri P, Perali A, Palestini F and Strinati G C 2015 Phys. Rev. B 91 054509
[35] Klimin S N, Tempere J and Devreese J T 2012 New J. Phys. 14 103044
[36] Martiyanov K, Barmashova T, Makhalov V and Turlapov A 2016 Phys. Rev. A 93 063622
[37] Murthy P A, Boettcher I, Bayha L, Holzmann M, Kedar D, Neidig M, Ries M G, Wenz A N, Zürn G and Jochim S 2015 Phys. Rev. Lett. 115 010401
[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[3] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[4] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[5] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[8] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[9] Non-universal Fermi polaron in quasi two-dimensional quantum gases
Yue-Ran Shi(石悦然), Jin-Ge Chen(陈金鸽), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2022, 31(8): 080305.
[10] Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap
Jie Miao(苗杰), Guoqi Bian(边国旗), Biao Shan(单标), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(8): 080306.
[11] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[12] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[13] Force-constant-decayed anisotropic network model: An improved method for predicting RNA flexibility
Wei-Bu Wang(王韦卜), Xing-Yuan Li(李兴元), and Ji-Guo Su(苏计国). Chin. Phys. B, 2022, 31(6): 068704.
[14] Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞). Chin. Phys. B, 2022, 31(6): 063203.
[15] Thermodynamic effects of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle
Zhenxiong Nie(聂振雄), Yun Liu(刘芸), Juhua Chen(陈菊华), and Yongjiu Wang(王永久). Chin. Phys. B, 2022, 31(5): 050401.
No Suggested Reading articles found!