Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077303    DOI: 10.1088/1674-1056/25/7/077303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of disorders on topological phases inone-dimensional optical superlattices

Zhizhou Wang(王志宙), Yidong Wu(吴一东), Huijing Du(杜会静), Xili Jing(井西利)
School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  In a recent paper, Lang et al. proposed that edge states and topological phases can be observed in one-dimensional optical superlattices. They showed that the topological phases can be revealed by observing the density profile of a trapped fermion system, which displays plateaus with their positions. However, disorders are not considered in their model. To study the effect of disorders on the topological phases, we introduce random potentials to the model for optical superlattcies. Our calculations show that edge states are robust against the disorders. We find the edge states are very sensitive to the number of the sites in the optical superlattice and we propose a simple rule to describe the relationship between the edge states and the number of sites. The density plateaus are also robust against weak disorders provided that the average density is calculated over a long interval. The widths of the plateaus are proportional to the widths of the bulk energy gaps when there are disorders. The disorders can diminish the bulk energy gaps. So the widths of the plateaus decrease with the increase of disorders and the density plateaus disappear when disorders are too strong. The results in our paper can be used to guide the experimental detection of topological phases in one-dimensional systems.
Keywords:  edge state      topological phase      optical superlattices  
Received:  17 February 2016      Revised:  16 March 2016      Accepted manuscript online: 
PACS:  73.21.Cd (Superlattices)  
  05.30.Fk (Fermion systems and electron gas)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41174116), the Graduate Student Education Teaching Reform Project, China (Grant No. JG201512), and the Young Teachers' Research Project of Yanshan University, China (Grant No. 13LGB028).
Corresponding Authors:  Yidong Wu, Huijing Du     E-mail:  wuyidong@ysu.edu.cn;hjdu@ysu.edu.cn

Cite this article: 

Zhizhou Wang(王志宙), Yidong Wu(吴一东), Huijing Du(杜会静), Xili Jing(井西利) Effect of disorders on topological phases inone-dimensional optical superlattices 2016 Chin. Phys. B 25 077303

[1] Laughlin R B 1981 Phys. Rev. B 23 5632
[2] Thouless D J, Kohmoto M, Nightingale M P and Nijs M D 1982 Phys. Rev. Lett. 49 405
[3] Avron J E, Seiler R and Simon B 1983 Phys. Rev. Lett. 51 51
[4] Haldane F D M 2004 Phys. Rev. Lett. 93 206602
[5] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[6] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[7] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[8] Lu Q, Zhang H Y, Cheng Y, Chen X R and Ji G F 2016 Chin. Phys. Lett. 33 027303
[9] Wu X G 2016 Chin. Phys. B 25 026401
[10] Nie S, Xu X Y, Xu G and Fang Z 2016 Chin. Phys. B 25 037311
[11] Shao H H, Liu Y M, Zhou X Y and Zhou G H 2016 Chin. Phys. B 23 107304
[12] Fidkowski L, Jackson T S and Klich I 2011 Phys. Rev. Lett. 107 036601
[13] Umucallar R O, Zhai H and Oktel M Ö 2008 Phys. Rev. Lett. 100 070402
[14] Stanescu T D, Galitski V and Das Sarma S 2010 Phys. Rev. A 82 013608
[15] Béri B and Cooper N R 2011 Phys. Rev. Lett. 107 145301
[16] Lang L J, Cai X and Chen S 2012 Phys. Rev. Lett. 108 220401
[17] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[18] Sheng D N, Weng Z Y, Sheng L and Haldane F D M 2006 Phys. Rev. Lett. 97 036808
[19] Roati G, Errico C D, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
[20] Deissler B, Zaccanti M, Roati G, Errico C D, Fattori M, Modugno M, Modugno G and Inguscio M 2010 Nat. Phys. 6 354
[21] Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 133
[22] Anderson P W 1958 Phys. Rev. 109 1492
[23] Hatsugai Y 1993 Phys. Rev. B 48 11851
[24] Hatsugai Y 1993 Phys. Rev. Lett. 71 3697
[25] Niu Q, Thouless D J and Wu Y S 1985 Phys. Rev. B 31 3372
[26] Cai X, Chen S and Wang Y 2011 Phys. Rev. A 83 043613
[1] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[2] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[3] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[4] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[5] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[6] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[7] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[8] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[9] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[10] Topological phases and type-II edge state in two-leg-coupled Su-Schrieffer-Heeger chains
Tianqi Luo(罗天琦), Xin Guan(关欣), Jingtao Fan(樊景涛), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 014208.
[11] Topological properties of non-Hermitian Creutz ladders
Hui-Qiang Liang(梁辉强) and Linhu Li(李林虎). Chin. Phys. B, 2022, 31(1): 010310.
[12] Topology of a parity-time symmetric non-Hermitian rhombic lattice
Shumai Zhang(张舒迈), Liang Jin(金亮), and Zhi Song(宋智). Chin. Phys. B, 2022, 31(1): 010312.
[13] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[14] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[15] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
No Suggested Reading articles found!