INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Performance improvement of blue light-emitting diodes with an AlInN/GaN superlattice electron-blocking layer |
Zhao Fang (赵芳), Yao Guang-Rui (姚光锐), Song Jing-Jing (宋晶晶), Ding Bin-Bin (丁彬彬), Xiong Jian-Yong (熊建勇), Su Chen (苏晨), Zheng Shu-Wen (郑树文), Zhang Tao (张涛), Fan Guang-Han (范广涵) |
a Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 510631, China; b Laboratory of Nanophotonic Functional Materials and Device, South China Normal University, Guangzhou 510631, China |
|
|
Abstract The characteristics of a blue light-emitting diode (LED) with an AlInN/GaN superlattice (SL) electron-blocking layer (EBL) are analyzed numerically. The carrier concentrations in the quantum wells, energy band diagrams, electrostatic fields, and internal quantum efficiency are investigated. The results suggest that the LED with an AlInN/GaN SL EBL has better hole injection efficiency, lower electron leakage, and smaller electrostatic fields in the active region than the LED with a conventional rectangular AlGaN EBL or a AlGaN/ GaN SL EBL. The results also indicate that the efficiency droop is markedly improved when an AlInN/GaN SL EBL is used.
|
Received: 28 August 2012
Revised: 17 December 2012
Accepted manuscript online:
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
85.50.-n
|
(Dielectric, ferroelectric, and piezoelectric devices)
|
|
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61176043), the Special Funds for Provincial Strategic and Emerging Industries Projects of Guangdong, China (Grant Nos. 2010A081002005, 2011A081301003, and 2012A080304016). |
Corresponding Authors:
Fan Guang-Han
E-mail: gfan@scnu.edu.cn
|
Cite this article:
Zhao Fang (赵芳), Yao Guang-Rui (姚光锐), Song Jing-Jing (宋晶晶), Ding Bin-Bin (丁彬彬), Xiong Jian-Yong (熊建勇), Su Chen (苏晨), Zheng Shu-Wen (郑树文), Zhang Tao (张涛), Fan Guang-Han (范广涵) Performance improvement of blue light-emitting diodes with an AlInN/GaN superlattice electron-blocking layer 2013 Chin. Phys. B 22 058503
|
[1] |
Yang L, Ma X H, Feng Q and Hao Y 2008 Chin. Phys. B 17 2696
|
[2] |
Lu Y, Yang Z J, Pan Y B, X K, Hu X D, Zhang B and Zhang G Y 2006 Chin. Phys. Lett. 23 256
|
[3] |
Chen J, Fan G H and Zhang Y Y 2012 Acta Phys. Sin. 61 178504 (in Chinese)
|
[4] |
Zhang Y Y and Fan G H 2011 Acta Phys. Sin. 60 078504
|
[5] |
Xie J Q, Ni X F, Fan Q, Shimada R, özgür Ü and Morkoc H 2008 Appl. Phys. Lett. 93 121107
|
[6] |
Rozhansky I V and Zakheim D A 2007 Phys. Status Solidi A 204 227
|
[7] |
Kumakura K and Kobayashi N 1999 Jpn. J. Appl. Phys. 38 L1012
|
[8] |
Kozodoy P, Hansen M, DenBaars P S and Mishra K U 1999 Appl. Phys. Lett. 74 3681
|
[9] |
Dingle R, Störmer L H, Gossard C A and Wiegmann W 1978 Appl. Phys. Lett. 33 665
|
[10] |
Wang C L, Tsai M C, Gong J R, Liao W T, Lin P Y, Yen K Y, Chang C C, Lin H Y and Hwang S K 2007 Mater. Sci. Eng. B 138 180
|
[11] |
Gong C C, Fan G H, Zhang Y Y, Xu Y Q, Liu X P, Zheng S W, Yao G R and Zhou D T 2012 Chin. Phys. B 21 068505
|
[12] |
Wang C H, Ke C C, Lee C Y, Chang S P, Chang W T, Li J C, Li Z Y, Yang H C, Kuo H C, Lu T C and Wang S C 2010 Appl. Phys. Lett. 97 261103
|
[13] |
Kuo Y K, Chang J Y and Tsai M C 2010 Opt. Lett. 35 3285
|
[14] |
Choi S, Kim H J, Kim S S, Liu J, Kim J, Ryou J H, Dupuis R D, Fischer A M and Ponce F A 2010 Appl. Phys. Lett. 96 221105
|
[15] |
Ling S C, Lu T C, Chang S P, Chen J R, Kuo H C and Wang S C 2010 Appl. Phys. Lett. 96 231101
|
[16] |
Wang T H, Chang J Y, Tsai M C and Kuo Y K 2011 Proc. SPIE 7954 79541
|
[17] |
Zse M S 1981 Physics of Semiconductor Devices (2nd edn.) (New York: John Wiley & Sons)
|
[18] |
Stringfellow G B and Craford M G 1997 High Brightness Light Emitting Diodes (San Diego: CA Academic) p. 412
|
[19] |
Kuo Y K, Chang J Y, Tsai M C and Yen S H 2009 Appl. Phys. Lett. 95 011116
|
[20] |
Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
|
[21] |
Lee N S, Cho S Y, Ryu H Y, Son J K, Paek H S, Sakong T, Jang T, Choi K K, Ha K H, Yang M H, Nam O H and Park Y 2006 Appl. Phys. Lett. 88 111101
|
[22] |
Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 098503
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|