Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047303    DOI: 10.1088/1674-1056/26/4/047303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Etching mask optimization of InAs/GaSb superlattice mid-wavelength infared 640×512 focal plane array

Hong-Yue Hao(郝宏玥)1,2, Wei Xiang(向伟)1,2, Guo-Wei Wang(王国伟)1,2, Ying-Qiang Xu(徐应强)1,2, Xi Han(韩玺)1,2, Yao-Yao Sun(孙瑶耀)1,2, Dong-Wei Jiang(蒋洞微)1,2, Yu Zhang(张宇)1,2, Yong-Ping Liao(廖永平)1,2, Si-Hang Wei(魏思航)1,2, Zhi-Chuan Niu(牛智川)1,2
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  In this paper we focused on the mask technology of inductively coupled plasma (ICP) etching for the mesa fabrication of infrared focal plane arrays (FPA). By using the SiO2 mask, the mesa has higher graphics transfer accuracy and creates less micro-ripples in sidewalls. Comparing the IV characterization of detectors by using two different masks, the detector using the SiO2 hard mask has the R0A of 9.7×106 Ω·cm2, while the detector using the photoresist mask has the R0A of 3.2×102 Ω·cm2 in 77 K. After that we focused on the method of removing the remaining SiO2 after mesa etching. The dry ICP etching and chemical buffer oxide etcher (BOE) based on HF and NH4F are used in this part. Detectors using BOE only have closer R0A to that using the combining method, but it leads to gaps on mesas because of the corrosion on AlSb layer by BOE. We finally choose the combining method and fabricated the 640×512 FPA. The FPA with cutoff wavelength of 4.8 μm has the average R0A of 6.13×109 Ω·cm2 and the average detectivity of 4.51×109 cm·Hz1/2·W-1 at 77 K. The FPA has good uniformity with the bad dots rate of 1.21% and the noise equivalent temperature difference (NEDT) of 22.9 mK operating at 77 K.
Keywords:  InAs/GaSb superlattices      etching mask      mid-wavelength infared      focal plane arrays  
Received:  03 November 2016      Revised:  09 January 2017      Accepted manuscript online: 
PACS:  73.21.Cd (Superlattices)  
  73.61.Ey (III-V semiconductors)  
  52.77.Bn (Etching and cleaning)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2014CB643903, 2013CB932904, 2012CB932701, and 2011CB922201), the National Special Funds for the Development of Major Research Equipment and Instruments, China (Grant No. 2012YQ140005), the National Natural Science Foundation of China (Grant Nos. 61274013, U1037602, 61306013, and 61290303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB01010200), and China Postdoctoral Science Foundation (Grant No. 2014M561029).
Corresponding Authors:  Zhi-Chuan Niu     E-mail:  zcniu@semi.ac.cn

Cite this article: 

Hong-Yue Hao(郝宏玥), Wei Xiang(向伟), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Xi Han(韩玺), Yao-Yao Sun(孙瑶耀), Dong-Wei Jiang(蒋洞微), Yu Zhang(张宇), Yong-Ping Liao(廖永平), Si-Hang Wei(魏思航), Zhi-Chuan Niu(牛智川) Etching mask optimization of InAs/GaSb superlattice mid-wavelength infared 640×512 focal plane array 2017 Chin. Phys. B 26 047303

[1] Sai-Halasz G A, Tsu R and Esaki L 1977 Appl. Phys. Lett. 30 651
[2] Kroemer H 2003 Physica E: Low-dimensional Systems and Nanostructures 20 196
[3] Smith D L and Mailhiot C 1987 J. Appl. Phys. 62 2545
[4] Nguyen B M, Chen G, Hoang A M, Abdollahi Pour S, Bogdanov S and Razeghi M 2011 Appl. Phys. Lett. 99 033501
[5] Nguyen B M, Razeghi M, Nathan V and Brown G J 2007 Proc. SPIE 6479 64790S
[6] Razeghi M, Pour S A, Huang E, Chen G, Haddadi A and Nguyen B M 2011 Proc. SPIE 8012 80122Q
[7] Ting D Z Y, Hill C J, Soibel A, Keo S A, Mumolo J M, Nguyen J and Gunapala S D 2009 Appl. Phys. Lett. 95 023508
[8] Robinson E, Souza A I D, Ionescu A C and Okerlund D 2014 Proc. SPIE 92200D
[9] Vurgaftman I, Aifer E H, Canedy C L, Tischler J G, Meyer J R, Warner J H, Jackson E M, Hildebrandt G and Sullivan G J 2006 Appl. Phys. Lett. 89 121114
[10] Aifer E H, Warner J H, Canedy C L, Vurgaftman I, Jackson E M, Tischler J G, Meyer J R, Powell S P, Olver K and Tennant W E 2010 J. Electron. Mater. 39 1070
[11] Salihoglu O, Muti A, Kutluer K, Tansel T, Turan R, Ergun Y and Aydinli A 2012 Appl. Phys. Lett. 101 073505
[12] Rodriguez J B, Plis E, Bishop G, Sharma Y D, Kim H, Dawson L R and Krishna S 2007 Appl. Phys. Lett. 91 043514
[13] Kim H S, Plis E, Rodriguez J B, Bishop G D, Sharma Y D, Dawson L R, Krishna S, Bundas J, Cook R, Burrows D, Dennis R, Patnaude K, Reisinger A and Sundaram M 2008 Appl. Phys. Lett. 92 183502
[14] Gautam N, Kim H S, Kutty M N, Plis E, Dawson L R and Krishna S 2010 Appl. Phys. Lett. 96 231107
[15] Mairiaux E, Desplanque L, Wallart X, Dambrine G and Zaknoune M 2008 IEEE 10412098
[16] De Salvo G C, Kaspi R and Bozada C A 1994 J. Electrochem. Soc. 141 3526
[17] Dier O, Lin C, Grau M and Amann M C 2004 Semicond. Sci. Technol. 19 1250
[18] Hao H Y, Xiang W, Wang G W, Xu Y Q, Ren W Z, Han X, He Z H, Liao Y P, Wei S H and Niu Z C 2015 Chin. Phys. Lett. 32 107302
[19] Lin A, Wei Y, Hood A, Bajowala A, Yazdanpanah V, Razeghi M and Tidrow M 2004 Appl. Phys. Lett. 84 2037
[20] Gin A, Wei Y, Bae J, Hood A, Nah J and Razeghi M 2004 Thin Solid Films 447 489
[21] Kim H S, Plis E, Gautam N, Khoshakhlagh A, Myers S, Kutty M N, Sharma Y, Dawson L R and Krishna S 2010 Proc. SPIE 7660 76601U
[22] Banerjee K, Ghosh S, Mallick S, Plis E and Krishna S 2009 J. Electron. Mater. 38
[23] Hao H Y, Xiang W, Wang G W, Jiang D W, Xu Y Q, Ren Z W, He Z H and Niu Z C 2014 Proc. SPIE 9300 93001K
[24] Wang G W, Xiang W, YXu Y Q, Zhang L, Peng Z Y, Lv Y Q, Si J J, Wang J, Xing J L, Ren Z W and Niu Z C 2013 J. Semicond. 34 114012
[25] Hao H Y, Wang G W, Xiang W, Han X, Xu Y Q, Liao Y P, Zhang Y, Ren Z W, Ni H Q, He Z H and Niu Z C 2015 Infr. Phys. Technol. 72 276
[1] Short-wave infrared InGaAs photodetectors and focal plane arrays
Yong-Gang Zhang(张永刚), Yi Gu(顾溢), Xiu-Mei Shao(邵秀梅), Xue Li(李雪), Hai-Mei Gong(龚海梅), Jia-Xiong Fang(方家熊). Chin. Phys. B, 2018, 27(12): 128102.
[2] Effect of compensation doping on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattice photodetectors
Wang Yong-Bin (王永宾), Xu Yun (徐云), Zhang Yu (张宇), Yu Xiu (迂修), Song Guo-Feng (宋国峰), Chen Liang-Hui (陈良惠). Chin. Phys. B, 2011, 20(6): 067302.
No Suggested Reading articles found!