Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060310    DOI: 10.1088/1674-1056/22/6/060310
GENERAL Prev   Next  

Phase-controlled atom-photon entanglement in a three-level Λ -type closed-loop atomic system

Ali Mortezapoura, Zeinab Kordib, Mohammad Mahmoudib
a Institute for Advanced Studies in Basic Sciences, P. O. Box 45195-159, Zanjan, Iran;
b Physics Department, University of Zanjan, P. O. Box 45195-313, Zanjan, Iran
Abstract  We study the entanglement of dressed atom and its spontaneous emission in a three-level Λ -type closed-loop atomic system in multi-photon resonance condition and beyond it. It is shown that the von Neumann entropy in such a system is phase-dependent, and it can be controlled by either intensity or relative phase of applied fields. It is demonstrated that for the special case of Rabi frequency of applied fields, the system is disentangled. In addition, we take into account the effect of Doppler broadening on the entanglement and it is found that a suitable choice of laser propagation direction allows us to obtain the steady state degree of entanglement (DEM) even in the presence of Doppler effect.
Keywords:  entanglement      quantum entropy      closed-loop system  
Received:  08 July 2012      Revised:  11 November 2012      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Corresponding Authors:  Mohammad Mahmoudi     E-mail:  mahmoudi@znu.ac.ir

Cite this article: 

Ali Mortezapour, Zeinab Kordi, Mohammad Mahmoudi Phase-controlled atom-photon entanglement in a three-level Λ -type closed-loop atomic system 2013 Chin. Phys. B 22 060310

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Schrödinger E 1935 Naturwissenschaften 23 807
[3] Schrödinger E 1935 Naturwissenschaften 23 823
[4] Schrödinger E 1935 Naturwissenschaften 23 844
[5] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[6] DiVincenzo D P 1995 Science 270 255
[7] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[8] Ursin R, Jennewein T, Aspelmeyer M, Kaltenbaek R, Lindenthal M, Walther P and Zeilinger A 2004 Nature 430 849
[9] Marcikic I, De Riedmatten H, Tittel W, Zbinden H, Legr M and Gisin N 2004 Phys. Rev. Lett. 93 180502
[10] Ursin R, Tiefenbacher F, Schmitt-Manderbach T, Weier H, Scheidl T, Lindenthal M, Blauensteiner B, Jennewein T, Perdigues J, Trojek P, Ö mer B, Fürst M, Meyenburg M, Rarity J, Sodnik Z, Barbieri C, Weinfurter H and Zeilinger A 2007 Nat. Phys. 3 481
[11] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[12] Abdalla M S, Abdel-Aty M and Obada A-S F 2003 Physica A 326 203
[13] Wu Q, Fang M F and Hu Y H 2007 Chin. Phys. 16 1971
[14] Zheng Q, Zhang X P and Ren Z Z 2008 Chin. Phys. B 17 3553
[15] Obada A S F, Hessian H A and Mohamed A B A 2008 Phys. Lett. A 372 3699
[16] Obada A S F, Eied A A and G M Abd Al-Kader 2008 J. Phys. B 41 195503
[17] Ouyang X C, Fang M F, Kang G D, Deng X J and Huang L Y 2010 Chin. Phys. B 19 030309
[18] Tan L, Zhang Y Q and Zhu Z H 2011 Chin. Phys. B 20 070303
[19] Fang M F and Zhu SY 2006 Physica A 369 475
[20] Sahrai M, Noshad H and Mahmoudi M 2011 J. Sciences, Islamic Republic of Iran 22 171
[21] Mortezapour A, Abedi M, Mahmoudi M and Khajehpour M R H 2011 J. Phys. B 44 085501
[22] Abazari M, Mortezapour A, Mahmoudi M and Sahrai M 2011 Entropy 13 1541
[23] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[24] Rosenfeld W, Berner S, Volz J, Weber M and Weinfurter H 2007 Phys. Rev. Lett. 98 050504
[25] Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Kurtsiefer C and Weinfurter H 2006 Phys. Rev. Lett. 96 030404
[26] Korsunsky E A and Kosachiov D V 1999 Phys. Rev. A 60 4996
[27] Bortman-Arbiv D, Wilson-Gordon A D and Friedmann H 2001 Phys. Rev. A 63 043818
[28] Morigi G, Franke-Arnold S and Oppo G L 2002 Phys. Rev. A 66 053409
[29] Javanainen J 1992 Europhys. Lett. 17 407
[30] Garrison J C and Chiao R Y 2008 Quantum Optics (Oxford: Oxford University Press) Chap. 6
[31] Phoenix S J D and Knight P L 1988 Ann. Phys. 186 381
[32] Araki H and Lieb E 1970 Commun. Math. Phys. 18 160
[33] Phoenix S J D and Knight P L 1991 Phys. Rev. A 44 6023
[34] Phoenix S J D and Knight P L 1991 Phys. Rev. Lett. 66 2833
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!