|
|
Phase-controlled atom-photon entanglement in a three-level Λ -type closed-loop atomic system |
Ali Mortezapoura, Zeinab Kordib, Mohammad Mahmoudib |
a Institute for Advanced Studies in Basic Sciences, P. O. Box 45195-159, Zanjan, Iran; b Physics Department, University of Zanjan, P. O. Box 45195-313, Zanjan, Iran |
|
|
Abstract We study the entanglement of dressed atom and its spontaneous emission in a three-level Λ -type closed-loop atomic system in multi-photon resonance condition and beyond it. It is shown that the von Neumann entropy in such a system is phase-dependent, and it can be controlled by either intensity or relative phase of applied fields. It is demonstrated that for the special case of Rabi frequency of applied fields, the system is disentangled. In addition, we take into account the effect of Doppler broadening on the entanglement and it is found that a suitable choice of laser propagation direction allows us to obtain the steady state degree of entanglement (DEM) even in the presence of Doppler effect.
|
Received: 08 July 2012
Revised: 11 November 2012
Accepted manuscript online:
|
PACS:
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Corresponding Authors:
Mohammad Mahmoudi
E-mail: mahmoudi@znu.ac.ir
|
Cite this article:
Ali Mortezapour, Zeinab Kordi, Mohammad Mahmoudi Phase-controlled atom-photon entanglement in a three-level Λ -type closed-loop atomic system 2013 Chin. Phys. B 22 060310
|
[1] |
Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
|
[2] |
Schrödinger E 1935 Naturwissenschaften 23 807
|
[3] |
Schrödinger E 1935 Naturwissenschaften 23 823
|
[4] |
Schrödinger E 1935 Naturwissenschaften 23 844
|
[5] |
Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
|
[6] |
DiVincenzo D P 1995 Science 270 255
|
[7] |
Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
|
[8] |
Ursin R, Jennewein T, Aspelmeyer M, Kaltenbaek R, Lindenthal M, Walther P and Zeilinger A 2004 Nature 430 849
|
[9] |
Marcikic I, De Riedmatten H, Tittel W, Zbinden H, Legr M and Gisin N 2004 Phys. Rev. Lett. 93 180502
|
[10] |
Ursin R, Tiefenbacher F, Schmitt-Manderbach T, Weier H, Scheidl T, Lindenthal M, Blauensteiner B, Jennewein T, Perdigues J, Trojek P, Ö mer B, Fürst M, Meyenburg M, Rarity J, Sodnik Z, Barbieri C, Weinfurter H and Zeilinger A 2007 Nat. Phys. 3 481
|
[11] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[12] |
Abdalla M S, Abdel-Aty M and Obada A-S F 2003 Physica A 326 203
|
[13] |
Wu Q, Fang M F and Hu Y H 2007 Chin. Phys. 16 1971
|
[14] |
Zheng Q, Zhang X P and Ren Z Z 2008 Chin. Phys. B 17 3553
|
[15] |
Obada A S F, Hessian H A and Mohamed A B A 2008 Phys. Lett. A 372 3699
|
[16] |
Obada A S F, Eied A A and G M Abd Al-Kader 2008 J. Phys. B 41 195503
|
[17] |
Ouyang X C, Fang M F, Kang G D, Deng X J and Huang L Y 2010 Chin. Phys. B 19 030309
|
[18] |
Tan L, Zhang Y Q and Zhu Z H 2011 Chin. Phys. B 20 070303
|
[19] |
Fang M F and Zhu SY 2006 Physica A 369 475
|
[20] |
Sahrai M, Noshad H and Mahmoudi M 2011 J. Sciences, Islamic Republic of Iran 22 171
|
[21] |
Mortezapour A, Abedi M, Mahmoudi M and Khajehpour M R H 2011 J. Phys. B 44 085501
|
[22] |
Abazari M, Mortezapour A, Mahmoudi M and Sahrai M 2011 Entropy 13 1541
|
[23] |
Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
|
[24] |
Rosenfeld W, Berner S, Volz J, Weber M and Weinfurter H 2007 Phys. Rev. Lett. 98 050504
|
[25] |
Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Kurtsiefer C and Weinfurter H 2006 Phys. Rev. Lett. 96 030404
|
[26] |
Korsunsky E A and Kosachiov D V 1999 Phys. Rev. A 60 4996
|
[27] |
Bortman-Arbiv D, Wilson-Gordon A D and Friedmann H 2001 Phys. Rev. A 63 043818
|
[28] |
Morigi G, Franke-Arnold S and Oppo G L 2002 Phys. Rev. A 66 053409
|
[29] |
Javanainen J 1992 Europhys. Lett. 17 407
|
[30] |
Garrison J C and Chiao R Y 2008 Quantum Optics (Oxford: Oxford University Press) Chap. 6
|
[31] |
Phoenix S J D and Knight P L 1988 Ann. Phys. 186 381
|
[32] |
Araki H and Lieb E 1970 Commun. Math. Phys. 18 160
|
[33] |
Phoenix S J D and Knight P L 1991 Phys. Rev. A 44 6023
|
[34] |
Phoenix S J D and Knight P L 1991 Phys. Rev. Lett. 66 2833
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|