Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057901    DOI: 10.1088/1674-1056/22/5/057901
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Formula for average energy required to produce a secondary electron in an insulator

Xie Ai-Gen (谢爱根), Zhan Yu (詹煜), Gao Zhi-Yong (高志勇), Wu Hong-Yan (吴红艳)
School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract  Based on a simple classical model specifying that the primary electrons interact with the electrons of a lattice through the Coulomb force and a conclusion that the lattice scattering can be ignored, the formula for the average energy required to produce a secondary electron (ε) is obtained. On the basis of the energy band of an insulator and the formula for ε, the formula for the average energy required to produce a secondary electron in an insulator (εi) is deduced as a function of the width of the forbidden band (Eg) and electron affinity χ. Experimental values and the εi values calculated with the formula are compared, and the results validate the theory that explains the relationships among Eg, χ, and εi and suggest that the formula for εi is universal on the condition that the primary electrons at any energy hit the insulator.
Keywords:  width of forbidden band      electron affinity      average energy      insulator  
Received:  23 August 2012      Revised:  22 October 2012      Accepted manuscript online: 
PACS:  79.20.Hx (Electron impact: secondary emission)  
Fund: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 51245010) and the Natural Science Foundation of Jiangsu Province, China (Grant No. 10KJB180004).
Corresponding Authors:  Xie Ai-Gen     E-mail:  xagth@126.com

Cite this article: 

Xie Ai-Gen (谢爱根), Zhan Yu (詹煜), Gao Zhi-Yong (高志勇), Wu Hong-Yan (吴红艳) Formula for average energy required to produce a secondary electron in an insulator 2013 Chin. Phys. B 22 057901

[1] Xie A G, Zhang J and Wang T B 2011 Chin. Phys. Lett.. 28 97901
[2] Xie A G, Li C Q and Wang T B 2009 Mod. Phys. Lett. B 23 2331
[3] Lei W, Zhang X B and Zhou X D 2005 Appl. Surf. Sci. 251 170
[4] Xie A G, Zhao H F, Song B and Pei Y J 2009 Nucl. Instr. and Meth. B 267 1761
[5] Xie A G, Yao Y J, Su J and Zhang J 2010 Nucl. Instr. and Meth. B 268 2565
[6] Xie A G, Zhang J and Wang T B 2011 Jpn. J. Appl. Phys. 50 126601
[7] Kazami Y, Junichiro K and Norio O 2009 Appl. Surf. Sci. 256 958
[8] Masaaki Y, Keiji T and Hiroaki K 2009 Appl. Surf. Sci. 169-170 78
[9] Yu D R, Qing S W, Yan G J and Duan P 2011 Chin. Phys. B 20 065204
[10] Zhao S L and Bertrand P 2011 Chin. Phys. B 20 037901
[11] Ganachaud J P and Mokrani A 1995 Surf. Sci. 334 329
[12] Kuhr J C and Fitting H J 1999 J. Electron. Spectrosc. Relat. Phenom. 105 257
[13] Ohya K, Inai K, Kuwada H, Hayashi T and Saito M 2008 Surf. Coat. Technol. 202 5310
[14] Koschik A, Ciappa M, Holzer S, Dapor M and Fichtner W 2010 Proc. SPIE 7729 77290
[15] Dapor M 2011 Nucl. Instr. and Meth. B 269 1668
[16] Dapor M, Jepson M A E, Inkson B J and Rodenburg C 2009 Microsc. Microanal. 15 237
[17] Rodenburg C, Jepson M A E, Bosch E G T and Dapor M 2010 Ultramicroscopy 110 1185
[18] Dapor M, Ciappa M and Fichtner W 2010 J. MicroNanolith. MEMS MOEMS 9 023001
[19] Tauc J and Abraham A 1959 Czech. J. Phys. 9 95
[20] Smith A and Dutton D 1958 J. Opt. Soc. Am. 48 1007
[21] Fiebiger J R and Muller R S 1972 J. Appl. Phys. 43 3202
[22] Ryan R D 1973 IEEE Trans. Nucl. Sci. NS-20 473
[23] Kobayashi T, Sugita T, Koyama M and Takayanagi S 1972 IEEE Trans. Nucl. Sci. NS-19 324
[24] Cornet A, Siffert P, Coche A and Tribelet R 1970 Appl. Phys. Lett. 17 422
[25] Kobayashi T 1972 Appl. Phys. Lett. 21 150
[26] Yamakawa K A 1951 Phys. Rev. 82 522
[27] Makarov V V and Petrov N N 1971 Sov.Phys-Semicond. 5 447
[28] Makarov V V 1975 Sov. Phys-Semicond. 9 526
[29] Konorova E A and Kozlov S F 1971 Sov. Phys-Semicond. 4 1600
[30] Kozlov S F, Stuck R, Hage-Ali M and Siffert P 1975 IEEE Trans. Nucl. Sci. NS-22 160
[31] Ausman G A and Mclean F B 1975 Appl. Phys. Lett. 26 173
[32] Shockley W 1961 Solid-State Elextron. 2 35
[33] Klein C A 1968 J. Appl. Phys. 39 2029
[34] Baroody E M 1950 Phys. Rev. 78 780
[35] http://physics.nist.gov/PhysRefData/Star/Text/appendix.html [2012-9-30]
[36] http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html [2012-9-30]
[37] Reimer L and Drescher H 1977 J. Phys. D 10 805
[38] Alig R C and Bloom S 1978 J. Appl. Phys. 49 3476
[39] Ukrainets V O, Peleshchak R M, Ilchuk G A, Ukrainets N A and Lukiyanets B A 2000 Mater. Sci. Eng. B 71 306
[40] Taylor T R, Amis K R, Xu C and Neumark D M 1998 Chem. Phys. Lett. 297 133
[41] Cao J, Luo B D, Lin H L and Chen S F 2011 Journal of Molecular Catalysis A: Chemical 344 138
[42] Hartman J D, Naniwae K, Petrich C, Nemanich R J and Davis R F 2005 Appl. Surf. Sci. 242 428
[43] Seiler H 1983 J. Appl. Phys. 54 R1
[44] Fijol J J, Then A M and Tasker G W 1991 Appl. Surf. Sci. 48/49 464
[1] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[2] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[3] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[4] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[5] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[6] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[7] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[8] Revealing Chern number from quantum metric
Anwei Zhang(张安伟). Chin. Phys. B, 2022, 31(4): 040201.
[9] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[10] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[11] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[12] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[13] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[14] Uniform light emission from electrically driven plasmonic grating using multilayer tunneling barriers
Xiao-Bo He(何小波), Hua-Tian Hu(胡华天), Ji-Bo Tang(唐继博), Guo-Zhen Zhang(张国桢), Xue Chen(陈雪), Jun-Jun Shi(石俊俊), Zhen-Wei Ou(欧振伟), Zhi-Feng Shi(史志锋), Shun-Ping Zhang(张顺平), Chang Liu(刘昌), and Hong-Xing Xu(徐红星). Chin. Phys. B, 2022, 31(1): 017803.
[15] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
No Suggested Reading articles found!