CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Formula for average energy required to produce a secondary electron in an insulator |
Xie Ai-Gen (谢爱根), Zhan Yu (詹煜), Gao Zhi-Yong (高志勇), Wu Hong-Yan (吴红艳) |
School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
|
|
Abstract Based on a simple classical model specifying that the primary electrons interact with the electrons of a lattice through the Coulomb force and a conclusion that the lattice scattering can be ignored, the formula for the average energy required to produce a secondary electron (ε) is obtained. On the basis of the energy band of an insulator and the formula for ε, the formula for the average energy required to produce a secondary electron in an insulator (εi) is deduced as a function of the width of the forbidden band (Eg) and electron affinity χ. Experimental values and the εi values calculated with the formula are compared, and the results validate the theory that explains the relationships among Eg, χ, and εi and suggest that the formula for εi is universal on the condition that the primary electrons at any energy hit the insulator.
|
Received: 23 August 2012
Revised: 22 October 2012
Accepted manuscript online:
|
PACS:
|
79.20.Hx
|
(Electron impact: secondary emission)
|
|
Fund: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 51245010) and the Natural Science Foundation of Jiangsu Province, China (Grant No. 10KJB180004). |
Corresponding Authors:
Xie Ai-Gen
E-mail: xagth@126.com
|
Cite this article:
Xie Ai-Gen (谢爱根), Zhan Yu (詹煜), Gao Zhi-Yong (高志勇), Wu Hong-Yan (吴红艳) Formula for average energy required to produce a secondary electron in an insulator 2013 Chin. Phys. B 22 057901
|
[1] |
Xie A G, Zhang J and Wang T B 2011 Chin. Phys. Lett.. 28 97901
|
[2] |
Xie A G, Li C Q and Wang T B 2009 Mod. Phys. Lett. B 23 2331
|
[3] |
Lei W, Zhang X B and Zhou X D 2005 Appl. Surf. Sci. 251 170
|
[4] |
Xie A G, Zhao H F, Song B and Pei Y J 2009 Nucl. Instr. and Meth. B 267 1761
|
[5] |
Xie A G, Yao Y J, Su J and Zhang J 2010 Nucl. Instr. and Meth. B 268 2565
|
[6] |
Xie A G, Zhang J and Wang T B 2011 Jpn. J. Appl. Phys. 50 126601
|
[7] |
Kazami Y, Junichiro K and Norio O 2009 Appl. Surf. Sci. 256 958
|
[8] |
Masaaki Y, Keiji T and Hiroaki K 2009 Appl. Surf. Sci. 169-170 78
|
[9] |
Yu D R, Qing S W, Yan G J and Duan P 2011 Chin. Phys. B 20 065204
|
[10] |
Zhao S L and Bertrand P 2011 Chin. Phys. B 20 037901
|
[11] |
Ganachaud J P and Mokrani A 1995 Surf. Sci. 334 329
|
[12] |
Kuhr J C and Fitting H J 1999 J. Electron. Spectrosc. Relat. Phenom. 105 257
|
[13] |
Ohya K, Inai K, Kuwada H, Hayashi T and Saito M 2008 Surf. Coat. Technol. 202 5310
|
[14] |
Koschik A, Ciappa M, Holzer S, Dapor M and Fichtner W 2010 Proc. SPIE 7729 77290
|
[15] |
Dapor M 2011 Nucl. Instr. and Meth. B 269 1668
|
[16] |
Dapor M, Jepson M A E, Inkson B J and Rodenburg C 2009 Microsc. Microanal. 15 237
|
[17] |
Rodenburg C, Jepson M A E, Bosch E G T and Dapor M 2010 Ultramicroscopy 110 1185
|
[18] |
Dapor M, Ciappa M and Fichtner W 2010 J. MicroNanolith. MEMS MOEMS 9 023001
|
[19] |
Tauc J and Abraham A 1959 Czech. J. Phys. 9 95
|
[20] |
Smith A and Dutton D 1958 J. Opt. Soc. Am. 48 1007
|
[21] |
Fiebiger J R and Muller R S 1972 J. Appl. Phys. 43 3202
|
[22] |
Ryan R D 1973 IEEE Trans. Nucl. Sci. NS-20 473
|
[23] |
Kobayashi T, Sugita T, Koyama M and Takayanagi S 1972 IEEE Trans. Nucl. Sci. NS-19 324
|
[24] |
Cornet A, Siffert P, Coche A and Tribelet R 1970 Appl. Phys. Lett. 17 422
|
[25] |
Kobayashi T 1972 Appl. Phys. Lett. 21 150
|
[26] |
Yamakawa K A 1951 Phys. Rev. 82 522
|
[27] |
Makarov V V and Petrov N N 1971 Sov.Phys-Semicond. 5 447
|
[28] |
Makarov V V 1975 Sov. Phys-Semicond. 9 526
|
[29] |
Konorova E A and Kozlov S F 1971 Sov. Phys-Semicond. 4 1600
|
[30] |
Kozlov S F, Stuck R, Hage-Ali M and Siffert P 1975 IEEE Trans. Nucl. Sci. NS-22 160
|
[31] |
Ausman G A and Mclean F B 1975 Appl. Phys. Lett. 26 173
|
[32] |
Shockley W 1961 Solid-State Elextron. 2 35
|
[33] |
Klein C A 1968 J. Appl. Phys. 39 2029
|
[34] |
Baroody E M 1950 Phys. Rev. 78 780
|
[35] |
http://physics.nist.gov/PhysRefData/Star/Text/appendix.html [2012-9-30]
|
[36] |
http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html [2012-9-30]
|
[37] |
Reimer L and Drescher H 1977 J. Phys. D 10 805
|
[38] |
Alig R C and Bloom S 1978 J. Appl. Phys. 49 3476
|
[39] |
Ukrainets V O, Peleshchak R M, Ilchuk G A, Ukrainets N A and Lukiyanets B A 2000 Mater. Sci. Eng. B 71 306
|
[40] |
Taylor T R, Amis K R, Xu C and Neumark D M 1998 Chem. Phys. Lett. 297 133
|
[41] |
Cao J, Luo B D, Lin H L and Chen S F 2011 Journal of Molecular Catalysis A: Chemical 344 138
|
[42] |
Hartman J D, Naniwae K, Petrich C, Nemanich R J and Davis R F 2005 Appl. Surf. Sci. 242 428
|
[43] |
Seiler H 1983 J. Appl. Phys. 54 R1
|
[44] |
Fijol J J, Then A M and Tasker G W 1991 Appl. Surf. Sci. 48/49 464
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|