Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 108103    DOI: 10.1088/1674-1056/ac76ac
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub

Shubin Yan(闫树斌)1,†, Hao Su(苏浩)2, Xiaoyu Zhang(张晓宇)3, Yi Zhang(张怡)1, Zhanbo Chen(陈展博)1, Xiushan Wu(吴秀山)1, and Ertian Hua(华尔天)1
1. School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Zhejiang-Belarus Joint Laboratory of Intelligent Equipment and System for Water Conservancy and Hydropower Safety Monitoring, Hangzhou 310018, China;
2. Hangzhou Hikvision Digital Technology Co., Ltd., Hangzhou 310018, China;
3. School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China
Abstract  A metal-insulator-metal (MIM)-based arc-shaped resonator coupled with a rectangular stub (MARS) structure is proposed. This structure can generate two tunable Fano resonances originating from two different mechanisms. The structure has the advantage of being sensitive to the refractive index, and this feature makes it favorable for application in various microsensors. The relationship between the structural parameters and Fano resonance is researched using the finite element method (FEM) based on the software COMSOL Multiphysics 5.4. The simulation reveals that the sensitivity reaches 1900 nm/refractive index unit (RIU), and the figure of merit (FOM) is 23.75.
Keywords:  Fano resonance      metal-insulator-metal (MIM) waveguide      refractive index sensor      Fabry—Perot (F-P) cavity  
Received:  18 April 2022      Revised:  27 May 2022      Accepted manuscript online: 
PACS:  81.07.Oj (Nanoelectromechanical systems (NEMS))  
  87.85.Ox (Biomedical instrumentation and micro-electro-mechanical systems (MEMS))  
Fund: The work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61875250 and 61975189), the Zhejiang Provincial Natural Science Foundation of China (Grant Nos. LD21F050001 and Y21F040001), the Key Research Project by Department of Water Resources of Zhejiang Province (Grant No. RA2101), the Key Research and Development Project of Zhejiang Province (Grant No. 2021C03019), the Key R&D Projects of Shanxi Province (Grant Nos. 201903D421032 and 01804D131038), and the Scientific Research Foundation of Zhejiang University of Water Resources and Electric Power (Grant No. xky2022032).
Corresponding Authors:  Shubin Yan     E-mail:  yanshb@zjweu.edu.cn

Cite this article: 

Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天) High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub 2022 Chin. Phys. B 31 108103

[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Jina L, Chen J, Xing L, Tian H, Wang J, Cui J and Rohimah S 2021 Appl. Opt 60 5312
[3] Khani S, Danaie M and Rezaei P 2018 Optical Engineering 57 1
[4] Zhang W 2020 IEEE J. Quantum Elect. 56 1
[5] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
[6] Zhang Y, Zhang Y and Dong Z C 2018 Acta Phys. Sin. 67 223301 (in Chinese)
[7] Wang B L 2020 Chin. Phys. B 29 045202
[8] Chen J, Li Z, Li J and Gong Q 2011 Opt. Express 19 9976
[9] Li Y C, Dai X, Jiang J L, Pan J Z, Wei X Y, Lu Y P, Lu S, Tu X C, Sun G Z and Wu P H 2018 Chin. Phys. B 27 060701
[10] Zhou N, Ye C, Polavarapu L and Xu Q H 2015 Nanoscale 90 25
[11] Zhang H, Shen D and Zhang Y 2014 Laser Phys. Lett. 11 115902
[12] Chen J C and Ying Y M 2019 Results Phys. 14 102420
[13] Zhang L, Wang L, Wu Y and Tai R C 2020 Chin. Opt. Lett. 18 9240
[14] Lu H, Liu X M, Mao D and Wang G X 2012 Opt. Lett. 37 3780
[15] Estevez M C, Otte M A, Sepulveda B and Lechuga L M 2014 Analytica Chimica Acta 806 55
[16] Lee B, Na H, Lee I M, Park J, Kim K Y and Lee S Y 2010 Opt. Express 18 598
[17] Zhou W, Li K, Song C, Hao P and Wu Y 2015 Opt. Express 23 413
[18] Butt M A, Khonina S N and Kazanskiy N L 2019 J. Mod. Opt. 66 1038
[19] Tsigaridas G N 2017 Photonic Sens. 7 217
[20] Zhu J and Li N 2020 Opt. Express 28 19978
[21] Zhang Y and Cui M 2019 J. Elec. Mater. 48 1005
[22] Liu X, Li J, Chen J, Rohimah S, Tian H and Wang J 2020 Appl. Opt 59 6424
[23] Zhang Y, Kuang Y and Zhang Z 2019 Appl. Phys. A. 125 13
[24] Qiao L T, Zhang G M, Wang Z S, Fan G P and Yan Y F 2019 Opt. Commun. 433 144
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[3] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[4] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[5] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[6] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[7] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[8] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[9] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[10] Multiple Fano resonances in nanorod and nanoring hybrid nanostructures
Xijun Wu(吴希军), Ceng Dou(窦层), Wei Xu(徐伟), Guangbiao Zhang(张广彪), Ruiling Tian(田瑞玲), Hailong Liu(刘海龙). Chin. Phys. B, 2019, 28(1): 014204.
[11] Dielectric loaded surface plasmon polariton properties of the Al2O3-Al nanostructure
Jie Yao(姚洁), Qi Wei(魏琦), Qing-Yu Ma(马青玉), Da-Jian Wu(吴大建). Chin. Phys. B, 2017, 26(5): 057302.
[12] Characteristics and mechanism analysis of Fano resonances in Π-shaped gold nano-trimer
Han-Hua Zhong(钟汉华), Jian-Hong Zhou(周见红), Chen-Jie Gu(顾辰杰), Mian Wang(王勉), Yun-Tuan Fang(方云团), Tian Xu(许田), Jun Zhou(周骏). Chin. Phys. B, 2017, 26(12): 127301.
[13] Tunable Fano resonances and plasmonic hybridization of gold triangle-rod dimer nanostructure
Meng Huang(黄萌), Dong Chen(陈栋), Li Zhang(张利), Jun Zhou(周骏). Chin. Phys. B, 2016, 25(5): 057303.
[14] Superscattering-enhanced narrow band forward scattering antenna
Hu De-Jiao (胡德骄), Zhang Zhi-You (张志友), Du Jing-Lei (杜惊雷). Chin. Phys. B, 2015, 24(10): 104202.
[15] Control of light scattering by nanoparticles with optically-induced magnetic responses
Liu Wei (刘伟), Andrey E. Miroshnichenko, Yuri S. Kivshar. Chin. Phys. B, 2014, 23(4): 047806.
No Suggested Reading articles found!