CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electrical transport and thermoelectric properties of Ni-doped perovskite-type YCo1-xNixO3 (0≤ x ≤0.07) prepared by sol-gel process |
Liu Yi (刘义), Li Hai-Jin (李海金), Zhang Qing (张清), Li Yong (李勇), Liu Hou-Tong (刘厚通) |
School of Mathematics and Physics, Anhui University of Technology, Ma'anshan 243032, China |
|
|
Abstract Electrical transport and thermoelectric properties of Ni-doped YCo1-xNixO3 (0≤ x ≤0.07), prepared by using sol-gel process, are investigated in a temperature range from 100 to 780 K. The results show that with the increase of Ni doping content, the values of DC resistivity of YCo1-xNixO3 decrease, but carrier concentration increases. The temperature dependences of the resistivity for YCo1-xNixO3 are found to follow a relation of lnρ ∝ 1/T in a low-temperature rang (LTR) (T<~304 K for x=0; ~ 230 K < T <~500 K for x=0.02, 0.05, and 0.07) and high-temperature range (HTR) (T > ~ 655 K for all compounds), respectively. The estimated apparent activation energies for conduction Ea1 in LRT and Ea2 in HTR are both found to decrease monotonically with doping content increasing. At very low temperatures (T < ~ 230 K), Mott's law is observed for YCo1-xNixO3 (x ≥ 0.02), indicating that considerable localized states form in the heavy doping compounds. Although the Seebeck coefficient of the compound decreases after Ni doping, the power factor of YCo1-xNixO3 is enhanced remarkably in a temperature range from 300 to 740 K, i.e., a 6-fold increase is achieved at 500 K for YCo0.98Ni0.02O3, indicating that the high-temperature thermoelectric property of YCoO3 can be improved by partial substitution of Ni for Co.
|
Received: 13 October 2012
Revised: 05 November 2012
Accepted manuscript online:
|
PACS:
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
72.20.Ee
|
(Mobility edges; hopping transport)
|
|
72.80.Ga
|
(Transition-metal compounds)
|
|
Fund: Project supported by the Key Laboratory of Novel Thin Film Solar Cells, Chinese Academy of Sciences (Grant No. KF201101), the Key Science Foundation of Higher Education Institutions of Anhui Province, China (Grant Nos. KJ2011A053 and KJ2012Z034), and the National Natural Science Foundation of China (Grant Nos. 51202005, 11204005, and 41075027). |
Corresponding Authors:
Liu Yi
E-mail: yliu6@ahut.edu.cn
|
Cite this article:
Liu Yi (刘义), Li Hai-Jin (李海金), Zhang Qing (张清), Li Yong (李勇), Liu Hou-Tong (刘厚通) Electrical transport and thermoelectric properties of Ni-doped perovskite-type YCo1-xNixO3 (0≤ x ≤0.07) prepared by sol-gel process 2013 Chin. Phys. B 22 057201
|
[1] |
Androulakis J, Pantelis M and Giapintzakis J 2004 Appl. Phys. Lett. 84 1099
|
[2] |
Berggold K, Kriener M, Zobel C, Reichl A, Reuther M, Muller R, Freimüth A and Lorenz T 2005 Phys. Rev. B 72 155
|
[3] |
Zhang X, Li X M, Chen T L and Chen L D 2006 J. Cryst. Growth 286 1
|
[4] |
Ji-Woong M, Won-Seon S, Hiroki O, Takasi O and Kunihito K 2000 J. Mater. Chem. 10 2007
|
[5] |
Ji-Woong M, Yoshitake M, Won-Seon S and Kunihito K 2001 Mater. Lett. 48 225
|
[6] |
Ohtani T, Kuroda K, Matsugami K and Katoh D 2000 J. Eur. Ceram. Soc. 20 2721
|
[7] |
Kostogloudis G Ch, Vasilakos N and Ftikos Ch 1998 Solid State Ionics 106 207
|
[8] |
Shang J, Zhang H, Li Y, Cao M G and Zhang P X 2010 Chin. Phys. B 19 107203
|
[9] |
Wang H C, Wang C L, Zhao M L, Liu J, Su W B, Yin N and Mei L M 2009 Chin. Phys. Lett. 26 107301
|
[10] |
Rossignol C, Ralph J M, Bae J M and Vaughey J T 2004 Solid State Ionics 175 59
|
[11] |
Bansal N P and Zhong Z M 2006 J. Powder Sources 158 148
|
[12] |
Emilio D and Carlos R M 2006 Mater. Lett. 60 1613
|
[13] |
Thornton G, Morrison F C, Partington S, Tofield B C and Williams D E 1988 J. Phys. C: Solid State Phys. 21 287
|
[14] |
Knížek K, Jirák Z, Hejtmánek J, Veverka M, Maryško M, Maris G and Palstra T T M 2005 Eur. Phys. J. B 47 213
|
[15] |
Ding B F and Zhou S Q 2011 Chin. Phys. B 20 127701
|
[16] |
Cai L G, Liu F M and Zhong W W 2010 Chin. Phys. B 19 097101
|
[17] |
Bao J C, Zhang N, Cao H X and Geng T 2008 Chin. Phys. B 17 317
|
[18] |
Feng J F, Huang Y H, Zhao J G, Han X F, Zhan W S, Zhao K and Wong H K 2005 Chin. Phys. 14 1879
|
[19] |
Yu Z, Du Y W, Wang J H and Liu G Q 2004 Chin. Phys. 13 90
|
[20] |
Liu X M, Yang M, Lu Z, Pei L, Liu J and Su W H 1999 Chin. Phys. 8 690
|
[21] |
Arun M 2004 Science 303 777
|
[22] |
Bhandari C M and Rowe D M 1995 Optimization of Carrier Concentration (Boca Raton: CRC Press)
|
[23] |
Zhou A J, Zhu T J and Zhao X B 2006 Mater. Sci. Eng. B 128 174
|
[24] |
Bhide V G, Rajoria D S, Reddy Y S, Rama R G and Rao C N R 1973 Phys. Rev. B 8 5028
|
[25] |
Demazeau G, Pouchard M and Hagenmüller P 1974 J. Solid State Chem. 9 202
|
[26] |
Mehta A, Berliner R and Smith R W 1997 J. Solid State Chem. 130 192
|
[27] |
Knížek K, Jirák Z, Hejtmánek J, Veverka M, Maryško M, Hauback B C and Fjellag H 2006 Phys. Rev. B 73 21443
|
[28] |
Liu Y and Qin X Y 2006 J. Phys. Chem. Solids 67 1893
|
[29] |
Liu Y, Qin X Y, Wang Y F, Xin H X, Zhang J and Li H J 2007 J. Appl. Phys. 101 083709
|
[30] |
Michel C R, Gago A S, Guzmán-Colín H, López-Mena E R, Lardizábal D and Buassi-Monroy O S 2004 Mater. Res. Bull. 39 2295
|
[31] |
Hejtmánek J, Jirák Z, Knížek K, Maryško M, Veverka M and Fujishiro H 2004 J. Magn. Magn. Mater. 272 e283
|
[32] |
Hejtmánek J, Jirák Z, Knížek K and Fujishiro H 2004 Proceedings of the 2nd European Conference on Thermoelectrics of European Thermoelectric Society, September 15-17, 2004 Kraków, Poland
|
[33] |
Zheng G H, Sun Y P, Zhu X B and Song W H 2006 Solid Sate Commun. 137 326
|
[34] |
Yamaguchi S, Okimoto Y and Tokura Y 1996 Phys. Rev. B 54 R11022
|
[35] |
Hadjarab B, Bassaid S, Bouguelia A and Trari M 2006 Physica C 439 67
|
[36] |
Xin H X, Qin X Y, Zhu X G and Liu Y 2006 J. Phys. D: Appl. Phys. 39 375
|
[37] |
Xu G J, Ryoji F, Masahiro S, Ichiro M and Zhou Y Q 2002 Appl. Phys. Lett. 80 3760
|
[38] |
Fisher B, Patlagan L, Reisner G M and Knizhnik A 2000 Phys. Rev. B 61 470
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|