Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 047202    DOI: 10.1088/1674-1056/24/4/047202

Electrical transport properties of YCo1-xMnxO3 (0≤ x ≤ 0.2) prepared by sol-gel process

Liu Yi (刘义)a b, Li Hai-Jin (李海金)a b
a School of Mathematics and Physics, Anhui University of Technology, Ma'anshan 243032, China;
b Institute of Optoelectronic Information Materials and Technologies, Anhui University of Technology, Ma'anshan 243032, China
Abstract  Mn substitution compounds YCo1-xMnxO3 (0≤ x ≤ 0.2) are synthesized by using the sol-gel process. Electrical transport properties of YCo1-xMnxO3 are investigated in the temperature range from 200 K to 780 K. The experimental results show that after Mn substitution the electrical resistivity of YCo1-xMnxO3 first increases, then decreases, which is due to the electrons introduced by Mn doping. The sign of Seebeck coefficient for YCo1-xMnxO3 (x ≠ 0) is positive or negative, which is also proved by the Hall coefficient measurement. Moreover, at about room temperature, the Seebeck coefficient of YCo1-xMnxO3 with 1% doping Mn content becomes a negative value, whose absolute value is maximum; furthermore, the absolute value gradually decreases with increasing the Mn substitution content, which can be explained by the double carrier model.
Keywords:  perovskite cobalt oxides      sol-gel process      electrical transport  
Received:  21 September 2014      Revised:  07 November 2014      Accepted manuscript online: 
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  72.80.Ga (Transition-metal compounds)  
  61.05.cp (X-ray diffraction)  
Fund: Project supported by the Anhui Provincial Science Key Foundation of Higher Education Institutions, China (Grant No. KJ2011A053) and the National Natural Science Foundation of China (Grant No. 51202005).
Corresponding Authors:  Liu Yi     E-mail:

Cite this article: 

Liu Yi (刘义), Li Hai-Jin (李海金) Electrical transport properties of YCo1-xMnxO3 (0≤ x ≤ 0.2) prepared by sol-gel process 2015 Chin. Phys. B 24 047202

[1] Raccah P M and Goodenough J B 1967 Phys. Rev. 155 932
[2] Bhide V H, Rajoria D S, Rao G Ramma and Rao C N R 1972 Phys. Rev. B 6 1021
[3] Thornton G, Morrison F C, Partington S, Tofield B C and Williams D E 1988 J. Phys. C: Solid State Phys. 21 287
[4] Liu Y, Qin XY, Wang Y F, Xin H X, Zhang J and Li H J 2007 J. Appl. Phys. 101 083709
[5] Androulakis J, Migiakis Pantelis and Giapintzakis J 2004 Appl. Phys. Lett. 84 1099
[6] Mehta Apurva, Berliner R and Smith Robert W 1997 J. Solid State Chem. 130 192
[7] Knížek K, Jirák Z, Hejtmánek J, Veverka M, Maryško M, Hauback B C and Fjellvåg H 2006 Phys. Rev. B 73 214443
[8] Liu Y and Qin X Y 2006 J. Phys. Chem. Solids 67 1893
[9] Liu Y, Li H J, Zhang Q and Liu H T 2012 Chin. J. Mater. Res. 26 31
[10] Liu Y, Zhang Q, Li H J and Liu H T 2013 Acta Phys. Sin. 62 047202 (in Chinese)
[11] Liu Y, Li H J and Li Y 2013 Ceram. Inter. 39 8189
[12] Liu Y, Li H J, Zhang Q, Li Y and Liu H T 2013 Chin. Phys. B 22 057201
[13] Chen H S 1987 The Handbook about Physical Properties of Metal Materials, Vol. 1: Physical Properties and Test Method of Metal (Beijing: Metallurgical Industry Press)
[14] Feng D and Jin G J 2003 Introduction to Condensed Matter Physics, Vol. 1 (Beijing: Higher Education Press)
[15] MacDonald D K C 1962 Thermoelectricity: an Introduction to the Principles (London: John Wiley & Sons Press)
[1] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[2] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[3] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[4] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[5] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[6] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[7] Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2019, 28(4): 047701.
[8] Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties
San-Sheng Wang(王三胜), Fang Li(李方), Han Wu(吴晗), Yu Zhang(张玉), Suleman Mu?ammad(穆罕默德苏尔曼), Peng Zhao(赵鹏), Xiao-Yun Le(乐小云), Zhi-Song Xiao(肖志松), Li-Xiang Jiang(姜利祥), Xue-Dong Ou(欧学东), Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2019, 28(2): 027401.
[9] Structural and electrical transport properties of Dirac-like semimetal PdSn4 under high pressure
Bowen Zhang(张博文), Chao An(安超), Yonghui Zhou(周永惠), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), Zhaorong Yang(杨昭荣). Chin. Phys. B, 2019, 28(12): 126202.
[10] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[11] Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method
Hong-xia Liu(刘虹霞), Shu-ping Deng(邓书平), De-cong Li(李德聪), Lan-xian Shen(申兰先), Shu-kang Deng(邓书康). Chin. Phys. B, 2017, 26(2): 027401.
[12] Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions
Li Yi (李宜), Liu Jian (刘剑), Wang Chun-Lei (王春雷), Su Wen-Bin (苏文斌), Zhu Yuan-Hu (祝元虎), Li Ji-Chao (李吉超), Mei Liang-Mo (梅良模). Chin. Phys. B, 2015, 24(4): 047201.
[13] In situ electrical transport measurement of superconductive ultrathin films
Liu Can-Hua (刘灿华), Jia Jin-Feng (贾金锋). Chin. Phys. B, 2015, 24(11): 110702.
[14] Electrical transport and thermoelectric properties of Ni-doped perovskite-type YCo1-xNixO3 (0≤ x ≤0.07) prepared by sol-gel process
Liu Yi (刘义), Li Hai-Jin (李海金), Zhang Qing (张清), Li Yong (李勇), Liu Hou-Tong (刘厚通). Chin. Phys. B, 2013, 22(5): 057201.
[15] Emergent phenomena in manganites under spatial confinement
Shen Jian (沈健), T. Z. Ward, L. F. Yin. Chin. Phys. B, 2013, 22(1): 017501.
No Suggested Reading articles found!