Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 110702    DOI: 10.1088/1674-1056/24/11/110702
Special Issue: TOPICAL REVIEW — Interface-induced high temperature superconductivity
TOPICAL REVIEW—Interface-induced high temperature superconductivity Prev   Next  

In situ electrical transport measurement of superconductive ultrathin films

Liu Can-Hua (刘灿华)a b, Jia Jin-Feng (贾金锋)a b
a Key Laboratory of Artificial Structures and Quantum Control, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
b Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract  The discovery of an extraordinarily superconductive large energy gap in SrTiO3 supported single-layer FeSe films has recently initiated a great deal of research interests in surface-enhanced superconductivity and superconductive ultrathin films fabricated on crystal surfaces. On account of the instability of ultra-thin films in air, it is desirable to perform electrical transport measurement in ultra-high vaccum (UHV). Here we review the experimental techniques of in situ electrical transport measurement and their applications on superconductive ultrathin films.
Keywords:  electrical transport      superconductive film      FeSe  
Received:  13 July 2015      Revised:  17 August 2015      Accepted manuscript online: 
PACS:  07.79.Cz (Scanning tunneling microscopes)  
  73.40.-c (Electronic transport in interface structures)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
Fund: The work in SJTU was supported by the National Basic Research Program of China (Grant Nos. 2013CB921902 and 2011CB922200) and the National Natural Science Foundation of China (Grant Nos. 11227404, 11274228, 11521404, 11174199, and 11134008).
Corresponding Authors:  Liu Can-Hua     E-mail:  canhualiu@sjtu.edu.cn

Cite this article: 

Liu Can-Hua (刘灿华), Jia Jin-Feng (贾金锋) In situ electrical transport measurement of superconductive ultrathin films 2015 Chin. Phys. B 24 110702

[1] Wang Q Y, Li Z, Zhang W H, et al.;2012 Chin. Phys. Lett. 29 037402
[2] Wu G, et al.;2009 J. Phys. Conden. Matter 21 142203
[3] He S L, He J F, Zhang W H, et al.;2013 Nat. Mat. 12 605
[4] Tan S Y, et al.;2013 Nat. Mat. 12 634
[5] Zhang W H, Sun Y, Zhang J S, et al.;2014 Chin. Phys. Lett. 31 017401
[6] Sun Y et al. 2014 Sci. Rep. 4 6040
[7] Deng L Z, Lü B, Wu Z, Xue Y Y, Zhang W H, Li F S, Wang L L, Ma X C, Xue Q K and Chu C W;2014 Phys. Rev. B 90 214513
[8] Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mat. 14 285
[9] Zhang T, Cheng P, Li W J, et al.;2010 Nat. Phys. 6 104
[10] Uchihashi T, Mishra P, Aono M and Nakayama T;2011 Phys. Rev. Lett. 107 207001
[11] Uchihashi T, Mishra P and Nakayama T;2013 Nanoscale Res. Lett. 8 167
[12] Yamada M, Hirahara T and Hasegawa S;2013 Phys. Rev. Lett. 110 237001
[13] Aono M, et al. 1998 Oyo Buturi 67 1361 (in Japanese)
[14] Shiraki I, Tanabe F, Hobara R, Nagao T and Hasegawa S;2001 Surf. Sci. 493 633
[15] Kanagawa T, Hobara R, Matsuda I, Tanikawa T, Natori A and Hasegawa S;2003 Phys. Rev. Lett. 91 036805
[16] Tanikawa T, Matsuda I, Kanagawa T and Hasegawa S;2004 Phys. Rev. Lett. 93 016801
[17] Yoshimoto S, Murata Y, Kubo K, et al.;2007 Nano Lett. 7 956
[18] Tono T, Hirahara T and Hasegawa S;2013 New J. Phys. 15 105018
[19] Barreto L, Kuhnemund L, Edler F, et al.;2014 Nano Lett. 14 3755
[20] Martins B V C, Smeu M, Livadaru L, Guo H and Wolkow R A;2014 Phys. Rev. Lett. 112 246802
[21] Ono K, Shimada H, Kobayashi S and Ootuka Y;1996 Jpn. J. Appl. Phys. 35 2369
[22] Deshmukh M M, Ralph D C, Thomas M and Silcox J;1999 Appl. Phys. Lett. 75 1631
[23] Uchihashi T, Ramsperger R, Nakayama T and Aono M;2008 Jpn. J. Appl. Phys. 47 1797
[24] Kraft J, Surnev S L and Netzer F P;1995 Surf. Sci. 340 36
[25] Yamazaki S, Hosomura Y, Matsuda I, Hobara R, Eguchi T, Hasegawa Y and Hasegawa S;2011 Phys. Rev. Lett. 106 116802
[26] Goldman A M and Markovic N;1998 Phys. Today 51 39
[27] Miccoli I, Edler F, Pfnür H and Tegenkamp C;2015 J. Phys.: Condens. Matter 27 223201
[28] Smits F M;1958 Bell Syst. Tech. J. 37 711
[29] Petersen D H, Hansen O, Lin R and Nielsen P F;2008 J. Appl. Phys. 104 013710
[30] Yamada M 2012 Master Thesis (The University of Tokyo)
[31] Rymaszew R;1969 J. Phys. E 2 170
[32] Petersen D H, Lin R, Hansen T M, Rosseel E, Vandervorst W, Markvardsen C, Kjaer D and Nielsen P F;2008 J. Vac. Sci. Technol. B 26 362
[33] Yamada M, Hirahara T, Hobara R and Hasegawa S;2012 Surf. Sci. Nanotech. 10 400
[34] Petersen C L, Grey F, Shiraki I and Hasegawa S;2000 Appl. Phys. Lett. 77 3782
[35] Shiraki I, Nagao T, Hasegawa S, Petersen C L, Boggild P, Hansen T M and Hansen F;2000 Surf. Rev. Lett. 7 533
[36] Hasegawa S, Shiraki I, Tanabe F, Hobara R, Kanagawa T, Tanikawa T, Matsuda I, Petersen C L, Hansen T M, Boggild P and Grey F;2003 Surf. Rev. Lett. 10 963
[37] Tanikawa T, Matsuda I, Hobara R and Hasegawa S;2003 Surf. Sci. Nanotech. 1 50
[38] Matsuda I, et al.;2007 Phys. Rev. Lett. 99 146805
[39] Liu C, Matsuda I, Yoshimoto S, Kanagawa T and Hasegawa S;2008 Phys. Rev. B 78 035326
[40] Ge J F, et al.;2015 Rev. Sci. Instru. 86 053903
[41] Tinkham M 2004 Introduction to Superconductivity, 2nd edn, Ch. 4 (Dover Publications)
[42] Kosterlitz J M and Thouless D J;1973 J. Phys. C 6 1181
[1] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[2] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[3] Structural and electrical transport properties of charge density wave material LaAgSb2 under high pressure
Bowen Zhang(张博文), Chao An(安超), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Yonghui Zhou(周永惠), Yifang Yuan(袁亦方), Chunhua Chen(陈春华), Lili Zhang(张丽丽), Xiaoping Yang(杨晓萍), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2021, 30(7): 076201.
[4] Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎). Chin. Phys. B, 2021, 30(10): 107402.
[5] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[6] Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films:Micro-Raman characterization and electrical transport properties
San-Sheng Wang(王三胜), Fang Li(李方), Han Wu(吴晗), Yu Zhang(张玉), Suleman Mu?ammad(穆罕默德苏尔曼), Peng Zhao(赵鹏), Xiao-Yun Le(乐小云), Zhi-Song Xiao(肖志松), Li-Xiang Jiang(姜利祥), Xue-Dong Ou(欧学东), Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2019, 28(2): 027401.
[7] Structural and electrical transport properties of Dirac-like semimetal PdSn4 under high pressure
Bowen Zhang(张博文), Chao An(安超), Yonghui Zhou(周永惠), Xuliang Chen(陈绪亮), Ying Zhou(周颖), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), Zhaorong Yang(杨昭荣). Chin. Phys. B, 2019, 28(12): 126202.
[8] Effect of Mn substitution on superconductivity in iron selenide (Li, Fe)OHFeSe single crystals
Yiyuan Mao(毛义元), Zian Li(李子安), Huaxue Zhou(周花雪), Mingwei Ma(马明伟), Ke Chai(柴可), Shunli Ni(倪顺利), Shaobo Liu(刘少博), Jinpeng Tian(田金鹏), Yulong Huang(黄裕龙), Jie Yuan(袁洁), Fang Zhou(周放), Jianqi Li(李建奇), Kui Jin(金魁), Xiaoli Dong(董晓莉), Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2018, 27(7): 077405.
[9] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[10] Electronic structure and nematic phase transition in superconducting multiple-layer FeSe films grown by pulsed laser deposition method
Bing Shen(沈兵), Zhong-Pei Feng(冯中沛), Jian-Wei Huang(黄建伟), Yong Hu(胡勇), Qiang Gao(高强), Cong Li(李聪), Yu Xu(徐煜), Guo-Dong Liu(刘国东), Li Yu(俞理), Lin Zhao(赵林), Kui Jin(金魁), X J Zhou(周兴江). Chin. Phys. B, 2017, 26(7): 077402.
[11] Doping Mn into (Li1-xFex)OHFe1-ySe superconducting crystals via ion-exchange and ion-release/introduction syntheses
Huaxue Zhou(周花雪), Shunli Ni(倪顺利), Jie Yuan(袁洁), Jun Li(李军), Zhongpei Feng(冯中沛), Xingyu Jiang(江星宇), Yulong Huang(黄裕龙), Shaobo Liu(刘少博), Yiyuan Mao(毛义元), Fang Zhou(周放), Kui Jin(金魁), Xiaoli Dong(董晓莉), Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2017, 26(5): 057402.
[12] Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method
Hong-xia Liu(刘虹霞), Shu-ping Deng(邓书平), De-cong Li(李德聪), Lan-xian Shen(申兰先), Shu-kang Deng(邓书康). Chin. Phys. B, 2017, 26(2): 027401.
[13] Synthesis of large FeSe superconductor crystals via ion release/introduction and property characterization
Dongna Yuan(苑冬娜), Yulong Huang(黄裕龙), Shunli Ni(倪顺利), Huaxue Zhou(周花雪), Yiyuan Mao(毛义元), Wei Hu(胡卫), Jie Yuan(袁洁), Kui Jin(金魁), Guangming Zhang(张广铭), Xiaoli Dong(董晓莉), Fang Zhou(周放). Chin. Phys. B, 2016, 25(7): 077404.
[14] Electrical transport properties of YCo1-xMnxO3 (0≤ x ≤ 0.2) prepared by sol-gel process
Liu Yi (刘义), Li Hai-Jin (李海金). Chin. Phys. B, 2015, 24(4): 047202.
[15] Thermoelectric properties of Sr0.61Ba0.39Nb2O6 -δ ceramics in different oxygen-reduction conditions
Li Yi (李宜), Liu Jian (刘剑), Wang Chun-Lei (王春雷), Su Wen-Bin (苏文斌), Zhu Yuan-Hu (祝元虎), Li Ji-Chao (李吉超), Mei Liang-Mo (梅良模). Chin. Phys. B, 2015, 24(4): 047201.
No Suggested Reading articles found!