Special Issue:
TOPICAL REVIEW — Interface-induced high temperature superconductivity
|
TOPICAL REVIEW—Interface-induced high temperature superconductivity |
Prev
Next
|
|
|
In situ electrical transport measurement of superconductive ultrathin films |
Liu Can-Hua (刘灿华)a b, Jia Jin-Feng (贾金锋)a b |
a Key Laboratory of Artificial Structures and Quantum Control, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; b Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China |
|
|
Abstract The discovery of an extraordinarily superconductive large energy gap in SrTiO3 supported single-layer FeSe films has recently initiated a great deal of research interests in surface-enhanced superconductivity and superconductive ultrathin films fabricated on crystal surfaces. On account of the instability of ultra-thin films in air, it is desirable to perform electrical transport measurement in ultra-high vaccum (UHV). Here we review the experimental techniques of in situ electrical transport measurement and their applications on superconductive ultrathin films.
|
Received: 13 July 2015
Revised: 17 August 2015
Accepted manuscript online:
|
PACS:
|
07.79.Cz
|
(Scanning tunneling microscopes)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
Fund: The work in SJTU was supported by the National Basic Research Program of China (Grant Nos. 2013CB921902 and 2011CB922200) and the National Natural Science Foundation of China (Grant Nos. 11227404, 11274228, 11521404, 11174199, and 11134008). |
Corresponding Authors:
Liu Can-Hua
E-mail: canhualiu@sjtu.edu.cn
|
Cite this article:
Liu Can-Hua (刘灿华), Jia Jin-Feng (贾金锋) In situ electrical transport measurement of superconductive ultrathin films 2015 Chin. Phys. B 24 110702
|
[1] |
Wang Q Y, Li Z, Zhang W H, et al.;2012 Chin. Phys. Lett. 29 037402
|
[2] |
Wu G, et al.;2009 J. Phys. Conden. Matter 21 142203
|
[3] |
He S L, He J F, Zhang W H, et al.;2013 Nat. Mat. 12 605
|
[4] |
Tan S Y, et al.;2013 Nat. Mat. 12 634
|
[5] |
Zhang W H, Sun Y, Zhang J S, et al.;2014 Chin. Phys. Lett. 31 017401
|
[6] |
Sun Y et al. 2014 Sci. Rep. 4 6040
|
[7] |
Deng L Z, Lü B, Wu Z, Xue Y Y, Zhang W H, Li F S, Wang L L, Ma X C, Xue Q K and Chu C W;2014 Phys. Rev. B 90 214513
|
[8] |
Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mat. 14 285
|
[9] |
Zhang T, Cheng P, Li W J, et al.;2010 Nat. Phys. 6 104
|
[10] |
Uchihashi T, Mishra P, Aono M and Nakayama T;2011 Phys. Rev. Lett. 107 207001
|
[11] |
Uchihashi T, Mishra P and Nakayama T;2013 Nanoscale Res. Lett. 8 167
|
[12] |
Yamada M, Hirahara T and Hasegawa S;2013 Phys. Rev. Lett. 110 237001
|
[13] |
Aono M, et al. 1998 Oyo Buturi 67 1361 (in Japanese)
|
[14] |
Shiraki I, Tanabe F, Hobara R, Nagao T and Hasegawa S;2001 Surf. Sci. 493 633
|
[15] |
Kanagawa T, Hobara R, Matsuda I, Tanikawa T, Natori A and Hasegawa S;2003 Phys. Rev. Lett. 91 036805
|
[16] |
Tanikawa T, Matsuda I, Kanagawa T and Hasegawa S;2004 Phys. Rev. Lett. 93 016801
|
[17] |
Yoshimoto S, Murata Y, Kubo K, et al.;2007 Nano Lett. 7 956
|
[18] |
Tono T, Hirahara T and Hasegawa S;2013 New J. Phys. 15 105018
|
[19] |
Barreto L, Kuhnemund L, Edler F, et al.;2014 Nano Lett. 14 3755
|
[20] |
Martins B V C, Smeu M, Livadaru L, Guo H and Wolkow R A;2014 Phys. Rev. Lett. 112 246802
|
[21] |
Ono K, Shimada H, Kobayashi S and Ootuka Y;1996 Jpn. J. Appl. Phys. 35 2369
|
[22] |
Deshmukh M M, Ralph D C, Thomas M and Silcox J;1999 Appl. Phys. Lett. 75 1631
|
[23] |
Uchihashi T, Ramsperger R, Nakayama T and Aono M;2008 Jpn. J. Appl. Phys. 47 1797
|
[24] |
Kraft J, Surnev S L and Netzer F P;1995 Surf. Sci. 340 36
|
[25] |
Yamazaki S, Hosomura Y, Matsuda I, Hobara R, Eguchi T, Hasegawa Y and Hasegawa S;2011 Phys. Rev. Lett. 106 116802
|
[26] |
Goldman A M and Markovic N;1998 Phys. Today 51 39
|
[27] |
Miccoli I, Edler F, Pfnür H and Tegenkamp C;2015 J. Phys.: Condens. Matter 27 223201
|
[28] |
Smits F M;1958 Bell Syst. Tech. J. 37 711
|
[29] |
Petersen D H, Hansen O, Lin R and Nielsen P F;2008 J. Appl. Phys. 104 013710
|
[30] |
Yamada M 2012 Master Thesis (The University of Tokyo)
|
[31] |
Rymaszew R;1969 J. Phys. E 2 170
|
[32] |
Petersen D H, Lin R, Hansen T M, Rosseel E, Vandervorst W, Markvardsen C, Kjaer D and Nielsen P F;2008 J. Vac. Sci. Technol. B 26 362
|
[33] |
Yamada M, Hirahara T, Hobara R and Hasegawa S;2012 Surf. Sci. Nanotech. 10 400
|
[34] |
Petersen C L, Grey F, Shiraki I and Hasegawa S;2000 Appl. Phys. Lett. 77 3782
|
[35] |
Shiraki I, Nagao T, Hasegawa S, Petersen C L, Boggild P, Hansen T M and Hansen F;2000 Surf. Rev. Lett. 7 533
|
[36] |
Hasegawa S, Shiraki I, Tanabe F, Hobara R, Kanagawa T, Tanikawa T, Matsuda I, Petersen C L, Hansen T M, Boggild P and Grey F;2003 Surf. Rev. Lett. 10 963
|
[37] |
Tanikawa T, Matsuda I, Hobara R and Hasegawa S;2003 Surf. Sci. Nanotech. 1 50
|
[38] |
Matsuda I, et al.;2007 Phys. Rev. Lett. 99 146805
|
[39] |
Liu C, Matsuda I, Yoshimoto S, Kanagawa T and Hasegawa S;2008 Phys. Rev. B 78 035326
|
[40] |
Ge J F, et al.;2015 Rev. Sci. Instru. 86 053903
|
[41] |
Tinkham M 2004 Introduction to Superconductivity, 2nd edn, Ch. 4 (Dover Publications)
|
[42] |
Kosterlitz J M and Thouless D J;1973 J. Phys. C 6 1181
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|