Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118105    DOI: 10.1088/1674-1056/27/11/118105
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment

Yu Tang(唐语)1, Decong Li(李德聪)1,2, Zhong Chen(陈钟)1, Shuping Deng(邓书平)1, Luqi Sun(孙璐琪)1, Wenting Liu(刘文婷)1, Lanxian Shen(申兰先)1, Shukang Deng(邓书康)1
1 Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunming 650500, China;
2 Photoelectric Engineering College, Yunnan Open University, Kunming 650500, China
Abstract  

SnSe is considered to be a promising thermoelectric material due to a high ZT value and abundant and non-toxic composition elements. However, the thermal stability is an important issue for commercial application. In particular, thermoelectric materials are in the high temperature for a long time due to the working condition. The present work investigates the thermal stability and oxidation resistance of single crystal SnSe thermoelectric materials. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results show that the internal of SnSe crystal is not easily oxidized, while the x-ray photoelectron spectroscopy (XPS) results indicate that the surface of SnSe is slight oxidized to SnO2. Even if the surface is oxidized, the SnSe crystal still exhibits stable thermoelectric properties. Meanwhile, the crystallization quality of SnSe samples can be improved after the appropriate heat treatment in the air, which is in favor of the carrier mobility and can improve the electrical conduction properties of SnSe. Moreover, the decrease of defect density after heat treatment can further improve the Seebeck coefficient and electrical transport properties of SnSe. The density functional theory (DFT) calculation verifies the important role of defect on the electrical conductivity and electron configuration. In summary, appropriate temperature annealing is an effective way to improve the transmission properties of SnSe single crystal thermoelectric materials.

Keywords:  SnSe      thermal stability      annealing      electrical transport properties      density functional theory  
Received:  03 July 2018      Revised:  10 August 2018      Accepted manuscript online: 
PACS:  81.05.Hd (Other semiconductors)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61864012).

Corresponding Authors:  Shukang Deng     E-mail:  skdeng@126.com

Cite this article: 

Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康) Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment 2018 Chin. Phys. B 27 118105

[1] He J, Kanatzidis M G and Dravid V P 2013 Mater. Today 16 166
[2] Kanatzidis M G 2010 Chem. Mater. 22 648
[3] Li J F, Liu W S, Zhao L D, et al. 2010 Npg Asia Mater. 2 152
[4] Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Energy & Environmental Sci. 2 466
[5] Baxter J, Bian Z, Chen G, Danielson D, Dresselhaus M S, Fedorov A G, Fisher T S, Jones C W, Maginn E and Kortshagen U 2009 Energy & Environmental Sci. 2 559
[6] Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
[7] Popuri S R, Pollet M, Decourt R, Morrison F D, Bennett N S and Bos J W G 2016 J. Mater. Chem. C 4 1685
[8] Zhang X and Zhao L D 2015 J. Materiomics 1 92
[9] Wang F Q, Zhang S, Yu J, et al. 2015 Nanoscale 7 15962
[10] Zhou Y, Zhao L D 2017 Advanced Mater. 29 1702676
[11] Zhou B, Li S, Li W, Li J, Zhang X, Lin S, Chen Z and Pei Y 2017 ACS Appl. Mater. Interfaces 9 34033
[12] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[13] Ding J, Xu B, Lin Y, Nan C and Liu W 2015 New J. Phys. 17 083012
[14] Wei T R, Wu C F, Zhang X, Tan Q, Sun L, Pan Y and Li J F 2015 Phys. Chem. Chem. Phys. Pccp 17 30102
[15] Harman T C, Taylor P J, Walsh M P and Laforge B E 2002 Science 297 2229
[16] Agarwal A, Chaki S H and Lakshminarayana D 2007 Mater. Lett. 61 5188
[17] Car R, Ciucci G and Quartapelle L 2010 Phys. Status Solidi 86 471
[18] Dai X Q, Wang X L, Li W and Wang T X 2015 Chin. Phys. B 24 117308
[19] Tang Y, Wang J, Li D, Deng S, Chen Z, Sun L, Liu W, Shen L and Deng S 2018 J. Alloys & Compd. 748 80
[20] Makinistian L and Albanesi E A 2009 Phys. Status Solidi 246 183
[21] Liu C Y, Miao L, Wang X Y, Wu S H, Zheng Y Y, Deng Z Y, Chen Y L, Wang G W and Zhou X Y 2018 Chin. Phys. B 27 047211
[22] Tang Y, Cheng F, Li D C, Deng S P, Chen Z, Sun L Q, Liu W T, Shen L X and Deng S K 2018 Physica B 539 8
[23] Wei T R, Wu C F, Zhang X, Tan Q, Sun L, Pan Y and Li J F 2015 Phys. Chem. Chem. Phys. 17 30102
[24] Suzuki Y and Nakamura H 2015 Phys. Chem. Chem. Phys. 17 29647
[25] Feng D, Ge Z H, Wu D, Chen Y X, Wu T, Li J and He J 2016 Phys. Chem. Chem. Phys. 18 31821
[26] Huang L, Wu F and Li J 2016 J. Chem. Phys. 144 114708
[27] Leng H Q, Zhou M, Zhao J, Han Y M and Li L F 2016 RSC Adv. 6 9112
[28] Zhao L D, Chang C, Tan G and Kanatzidis M G 2016 Energy & Environmental Sci. 9 3044
[29] Duvjir G, Min T, Thi Ly T, Kim T, Duong A T, Cho S, Rhim S H, Lee J and Kim J 2017 Appl. Phys. Lett. 110 5227
[30] Agarwal A, Vashi M N, Lakshminarayana D and Batra N M 2000 J. Mater. Sci. Mater. Electron. 11 67
[31] Mori H, Usui H, Ochi M and Kuroki K 2017 Phys. Rev. B 96 085113
[32] Yang S D, Si J X, Su Q M and Wu H F2017 Mater. Lett. 193 146
[33] Sava F, Borca C N, Galca A C, Socol G, Grolimund D, Mihai C and Velea A 2017 Phys. Status Solidi 255 1700552
[34] Wu, D, et al. 2017 Nano Energy 35 321
[35] Wang X, Xu J, Liu G Q, et al. 2017 Npg Asia Mater. 9 e426
[36] Sun Y, Wang D and Shuai Z 2017 J. Phys. Chem. C 121 19080
[37] Xiao Y, Chang C, Zhang X, Pei Y, Li F, Yuan B, Gong S and Zhao L D 2016 J. Mater. Sci.:Mater. Electron. 27 2712
[38] Chen Y X, Ge Z H, Yin M, Feng D, Huang X Q, Zhao W and He J 2016 Advanced Funct. Mater. 26 6836
[39] Yan J J, Ke F, Liu C L, Wang L, Wang Q L, Zhang J K, Li G H, Han Y H, Ma Y Z and Gao C X 2016 Phys. Chem. Chem. Phys. 18 5012
[40] Guo J, Jian J K, Liu J, Cao B L, Lei R B, Zhang Z H, Song B and Zhao H Z 2017 Nano Energy 38 569
[41] Duong A T, et al. 2016 Nat Commun. 7 13713
[42] Chang C, et al. 2016 RSC Adv. 6 98216
[43] Peng K, Lu X, Zhan H, Hui S, Tang X, Wang G, Dai J, Uher C, Wang G and Zhou X 2016 Energy & Environmental Sci. 9 454
[44] Zhang Y S, Hao S Q, Zhao L D, Wolverton C and Zeng Z 2016 J. Mater. Chem. A 4 12073
[45] Zhang B, Peng K L, Sha X C, Li A, Zhou X Y, Chen Y H, Deng Q S, Yang D F, Ma E and Han X D2017 Microscopy & Microanalysis 23 173
[46] Li Y, He B, Heremans J P and Zhao J C 2016 J. Alloys Compd. 669 224
[47] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[48] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[49] Blochl P, Blöchl E and Blöchl P E 1994 Phys. Rev. B 50 17953
[50] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[51] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[52] Monkhorst H J 1977 Phys. Rev. B:Condens. Matter 16 1748
[53] Wang J, Liu J, Zhang B, Wan H, Li Z, Ji X, Xu K, Chen C, Zha D and Miao L 2017 Nano Energy 42 98
[54] Zhang X R and Liu Y W 2018 Chin. Phys. B 27 014401
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Laser-induced phase conversion of n-type SnSe2 to p-type SnSe
Qi Zheng(郑琦), Rong Yang(杨蓉), Kang Wu(吴康), Xiao Lin(林晓), Shixuan Du(杜世萱), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(4): 047306.
[15] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
No Suggested Reading articles found!