INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment |
Yu Tang(唐语)1, Decong Li(李德聪)1,2, Zhong Chen(陈钟)1, Shuping Deng(邓书平)1, Luqi Sun(孙璐琪)1, Wenting Liu(刘文婷)1, Lanxian Shen(申兰先)1, Shukang Deng(邓书康)1 |
1 Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal University, Kunming 650500, China;
2 Photoelectric Engineering College, Yunnan Open University, Kunming 650500, China |
|
|
Abstract SnSe is considered to be a promising thermoelectric material due to a high ZT value and abundant and non-toxic composition elements. However, the thermal stability is an important issue for commercial application. In particular, thermoelectric materials are in the high temperature for a long time due to the working condition. The present work investigates the thermal stability and oxidation resistance of single crystal SnSe thermoelectric materials. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results show that the internal of SnSe crystal is not easily oxidized, while the x-ray photoelectron spectroscopy (XPS) results indicate that the surface of SnSe is slight oxidized to SnO2. Even if the surface is oxidized, the SnSe crystal still exhibits stable thermoelectric properties. Meanwhile, the crystallization quality of SnSe samples can be improved after the appropriate heat treatment in the air, which is in favor of the carrier mobility and can improve the electrical conduction properties of SnSe. Moreover, the decrease of defect density after heat treatment can further improve the Seebeck coefficient and electrical transport properties of SnSe. The density functional theory (DFT) calculation verifies the important role of defect on the electrical conductivity and electron configuration. In summary, appropriate temperature annealing is an effective way to improve the transmission properties of SnSe single crystal thermoelectric materials.
|
Received: 03 July 2018
Revised: 10 August 2018
Accepted manuscript online:
|
PACS:
|
81.05.Hd
|
(Other semiconductors)
|
|
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
81.40.Ef
|
(Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61864012). |
Corresponding Authors:
Shukang Deng
E-mail: skdeng@126.com
|
Cite this article:
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康) Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment 2018 Chin. Phys. B 27 118105
|
[1] |
He J, Kanatzidis M G and Dravid V P 2013 Mater. Today 16 166
|
[2] |
Kanatzidis M G 2010 Chem. Mater. 22 648
|
[3] |
Li J F, Liu W S, Zhao L D, et al. 2010 Npg Asia Mater. 2 152
|
[4] |
Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Energy & Environmental Sci. 2 466
|
[5] |
Baxter J, Bian Z, Chen G, Danielson D, Dresselhaus M S, Fedorov A G, Fisher T S, Jones C W, Maginn E and Kortshagen U 2009 Energy & Environmental Sci. 2 559
|
[6] |
Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123
|
[7] |
Popuri S R, Pollet M, Decourt R, Morrison F D, Bennett N S and Bos J W G 2016 J. Mater. Chem. C 4 1685
|
[8] |
Zhang X and Zhao L D 2015 J. Materiomics 1 92
|
[9] |
Wang F Q, Zhang S, Yu J, et al. 2015 Nanoscale 7 15962
|
[10] |
Zhou Y, Zhao L D 2017 Advanced Mater. 29 1702676
|
[11] |
Zhou B, Li S, Li W, Li J, Zhang X, Lin S, Chen Z and Pei Y 2017 ACS Appl. Mater. Interfaces 9 34033
|
[12] |
Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
|
[13] |
Ding J, Xu B, Lin Y, Nan C and Liu W 2015 New J. Phys. 17 083012
|
[14] |
Wei T R, Wu C F, Zhang X, Tan Q, Sun L, Pan Y and Li J F 2015 Phys. Chem. Chem. Phys. Pccp 17 30102
|
[15] |
Harman T C, Taylor P J, Walsh M P and Laforge B E 2002 Science 297 2229
|
[16] |
Agarwal A, Chaki S H and Lakshminarayana D 2007 Mater. Lett. 61 5188
|
[17] |
Car R, Ciucci G and Quartapelle L 2010 Phys. Status Solidi 86 471
|
[18] |
Dai X Q, Wang X L, Li W and Wang T X 2015 Chin. Phys. B 24 117308
|
[19] |
Tang Y, Wang J, Li D, Deng S, Chen Z, Sun L, Liu W, Shen L and Deng S 2018 J. Alloys & Compd. 748 80
|
[20] |
Makinistian L and Albanesi E A 2009 Phys. Status Solidi 246 183
|
[21] |
Liu C Y, Miao L, Wang X Y, Wu S H, Zheng Y Y, Deng Z Y, Chen Y L, Wang G W and Zhou X Y 2018 Chin. Phys. B 27 047211
|
[22] |
Tang Y, Cheng F, Li D C, Deng S P, Chen Z, Sun L Q, Liu W T, Shen L X and Deng S K 2018 Physica B 539 8
|
[23] |
Wei T R, Wu C F, Zhang X, Tan Q, Sun L, Pan Y and Li J F 2015 Phys. Chem. Chem. Phys. 17 30102
|
[24] |
Suzuki Y and Nakamura H 2015 Phys. Chem. Chem. Phys. 17 29647
|
[25] |
Feng D, Ge Z H, Wu D, Chen Y X, Wu T, Li J and He J 2016 Phys. Chem. Chem. Phys. 18 31821
|
[26] |
Huang L, Wu F and Li J 2016 J. Chem. Phys. 144 114708
|
[27] |
Leng H Q, Zhou M, Zhao J, Han Y M and Li L F 2016 RSC Adv. 6 9112
|
[28] |
Zhao L D, Chang C, Tan G and Kanatzidis M G 2016 Energy & Environmental Sci. 9 3044
|
[29] |
Duvjir G, Min T, Thi Ly T, Kim T, Duong A T, Cho S, Rhim S H, Lee J and Kim J 2017 Appl. Phys. Lett. 110 5227
|
[30] |
Agarwal A, Vashi M N, Lakshminarayana D and Batra N M 2000 J. Mater. Sci. Mater. Electron. 11 67
|
[31] |
Mori H, Usui H, Ochi M and Kuroki K 2017 Phys. Rev. B 96 085113
|
[32] |
Yang S D, Si J X, Su Q M and Wu H F2017 Mater. Lett. 193 146
|
[33] |
Sava F, Borca C N, Galca A C, Socol G, Grolimund D, Mihai C and Velea A 2017 Phys. Status Solidi 255 1700552
|
[34] |
Wu, D, et al. 2017 Nano Energy 35 321
|
[35] |
Wang X, Xu J, Liu G Q, et al. 2017 Npg Asia Mater. 9 e426
|
[36] |
Sun Y, Wang D and Shuai Z 2017 J. Phys. Chem. C 121 19080
|
[37] |
Xiao Y, Chang C, Zhang X, Pei Y, Li F, Yuan B, Gong S and Zhao L D 2016 J. Mater. Sci.:Mater. Electron. 27 2712
|
[38] |
Chen Y X, Ge Z H, Yin M, Feng D, Huang X Q, Zhao W and He J 2016 Advanced Funct. Mater. 26 6836
|
[39] |
Yan J J, Ke F, Liu C L, Wang L, Wang Q L, Zhang J K, Li G H, Han Y H, Ma Y Z and Gao C X 2016 Phys. Chem. Chem. Phys. 18 5012
|
[40] |
Guo J, Jian J K, Liu J, Cao B L, Lei R B, Zhang Z H, Song B and Zhao H Z 2017 Nano Energy 38 569
|
[41] |
Duong A T, et al. 2016 Nat Commun. 7 13713
|
[42] |
Chang C, et al. 2016 RSC Adv. 6 98216
|
[43] |
Peng K, Lu X, Zhan H, Hui S, Tang X, Wang G, Dai J, Uher C, Wang G and Zhou X 2016 Energy & Environmental Sci. 9 454
|
[44] |
Zhang Y S, Hao S Q, Zhao L D, Wolverton C and Zeng Z 2016 J. Mater. Chem. A 4 12073
|
[45] |
Zhang B, Peng K L, Sha X C, Li A, Zhou X Y, Chen Y H, Deng Q S, Yang D F, Ma E and Han X D2017 Microscopy & Microanalysis 23 173
|
[46] |
Li Y, He B, Heremans J P and Zhao J C 2016 J. Alloys Compd. 669 224
|
[47] |
Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
|
[48] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[49] |
Blochl P, Blöchl E and Blöchl P E 1994 Phys. Rev. B 50 17953
|
[50] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[51] |
Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
|
[52] |
Monkhorst H J 1977 Phys. Rev. B:Condens. Matter 16 1748
|
[53] |
Wang J, Liu J, Zhang B, Wan H, Li Z, Ji X, Xu K, Chen C, Zha D and Miao L 2017 Nano Energy 42 98
|
[54] |
Zhang X R and Liu Y W 2018 Chin. Phys. B 27 014401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|